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Prethermalization in nearly integrable systems

- Prethermalization [Berges et al. PRL 2004]

a physical quantity
Prethermalized state

non-equilibrium

H = Hintegrable_l_ gvperturbation

Nearly integrable system



~Lieb-Liniger mode| -~

Model

‘trapig pot"e’ntial f/

~— X Y,z

X

HYL []= [ [0 (2) 8t () + b ()1 ()2 (x) ()] dz
units h=2m = N/L =1



Model

Lieb-Liniger model

Li et al., PRL 2017



~ Lieb-Liniger model -

I\/Iodel

‘traping poté/ntialz fl

~— I Y, z

X

HYL []= [ [0 (2) 8t () + b ()1 ()2 (x) ()] dz
units h=2m = N/L =1

many-body energy eigenstates ( Bethe-Ansatz method )

N-body eigenstate |kN )——— eigenenergy

E(kN) = 3L, kD)= B(- kN)
eigenmomentum '

P(kN) — Zi:l k()

| quasi-momenta |

BN = (MW, k@, ... k()



Setup | coherent splitting of a 1d Bose gas

P« N 3 ; =2
. 3 8
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N-boson Ground State 1B (0))

[ dZO S (@) [T7L, [ (2:)]]0) [ dE8W {3 (@) [[;L, 5[] (w:)

H[y)]

$3 ()]0, 0)



Setup | coherent splitting of a 1d Bose gas

{ AL N
evolution H“[t1] + H"[4)2]

tential
B (te)) = e (T IAIT AT 2Dt | (0))

Z=[4] () + ¢i(2)]

Ate [$(0))
)10y~ [ dBCRS () [[;1, 5141 (2:) + P1(24)]]0, 0)




“‘Non-thermal” steady state found

r-auto-correlation Ci(z, t) =
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Non-thermality is caused by entanglement
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Non-thermality is caused by entanglement

vvvvvvvv

infinite-time avis represented by 0 il cosscomnaiion

" (N=3)

~—— infinite-time av.

~— Gibbs with Tog |
~==Diagonal part ‘
~==0ff-diagonal part

@OI01%0) = tr (BO)(@()|0) g S . <Py

(),(}SL infinite-time av.

if | @ (t) > — Zn e—iEntCn | En> :_ & =“Diagonal part” + “Off-diagonal part
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o \KGibbs with Toer

then O.u)-r].S -10 -0.5.- (;f;) » —(;.;’ 1.0 1.5
p = Zm,n ei(Em_En)tC:zcﬂEn)(Em' =D [cn|?| En)(En]

| statistical mixture, |
| N0 quantum coherence

lassumed no degeneracy;




Non-thermality is caused by entanglement

vvvvvvvv

infinite-time avis represented by 1l cross-cometaton

r(N=3)

~— infinite-time av.
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~==Diagonal part ‘
~==0ff-diagonal part
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Non-thermality is caused by entanglement
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infinite-time avis represented by 0 isof -cross-comelation
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Non-thermality is caused by entanglement
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infinite-time avis represented by gt rossecommelaion

" (N=3)

~— infinite-time av.
— Gibbs with T |
=~==Diagonal part
~==0Off-diagonal part

: ’ I\
[ g2 Entanglement!!

@002 (1)) = tr (@) (@(1)|0)

n (105: linfinite-time av. \‘
f |  =“Diagonal part” + “Off-diagonal part”
In our setup, e |

“eee \Gibbs with Tosr

ﬁ — Z’n |En|2 | q)n> <(I)n| R T T Y Y

diagonal
%(Iﬁi”a—’%v_MMEi‘”,—%\"MlH KM EN-My_ M EN )‘ﬁ/ g ff |
1 (1T, RN My (MR M | — ML RN My, iy A O -diagona

correspondingly,

@) = 25 (1KM, =Ry ™) + | — EM, By )
Entanglement!!

A A

P = Pdiagonal + Poff-diagonal




015}
- (N=3)

005+ infinite-time av. \
lense =“Diagonal part” + “Off-diagonal part” Zect
"~.,.ReibbswithTeg o I
0001 o 1.:.1.Pmp-“l': ........
-1.5 -10 -05 0.0 05 1.0 1.5
Ir

Non-thermality is caused by entanglement
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~ingredients (Entanglement Prethermalization) ——
| coherent splitting & degeneracy (symmetry)
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Remaining Question | ensemble description?

What has been shown

015+
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cross-correlation
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- Gibbs with Teﬁ‘-‘
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o2t Entanglement!
3
005+ infinite-time av. \ |
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What statistical mechanical ensemble can describe EP?

- canonical ensemble, generalized Gibbs ensemble, or another?
- technically difficult in the Lieb-Liniger model

a toy-model analysis of EP



Model | coherent splitting of two bosons in a trap

(21,22) = o?(z1 — z2)?/:
V(zy,x2) (21 2)°/2 fd$1d$2\l’g(x1,xg)wT(ajl)z/)T(ng) ‘Q>
o0

Y(x) = [1(z) + a(a)]/V2

& post-select (1,1) states

o) = / diydseBele, wail (a)wli) 0]

time evolution
no interaction with noninteracting H
after splitting



coherent splitting + post selection = interaction quench

distinguishable particles Hamiltonian

V(zi.20) = (1 — x0)2/2 A | P
( 1 l.Z) X (ll 1.2) / f'[n-:;(})f+1)§)+

.. B

1 0r < T
z(ll T l)) + ‘—2-(;‘1..'] — L9 )”

after quench (no interaction)

ai = L (xi+ip;) (i =1,2)
T T

H”:() = (LJ{(Ll + (L‘};(LQ — a+a+ 2 a ¢ )

switch-off \
Interaction

Ay = %(al +as)

Tl” T
((1) ((I)) |() Im,n)) =

m,n) =

high degeneracy in the spectrum
HN = span{|m,n) |m +n = N}




coherent splitting + post selection = interaction quench

distinguishable particles Hamiltonian

| ] )
21 29) = a2(2s — £0)2/" v W
Vigr,22) = a’l®r — su)/2 Ho = (P} +15) +

.. B

1 - = e
5(1, + &5) + 3-(;1.71 — T9)”

before quench (interacting)

acM — A+
.‘.

switch-off (ro] = coshra_ + sinhra'

interaction et =14 a?

A T
Hy = AcpnACM T v1+ (lg(ljelal(]

1 tanh r ¢, 2
GS; a) = o~ 285 (al)? |0

vcosh r




Time evolution and long-time average

initial state = interacting ground state

1

<SSR (g )2
& 2\ 0
vcosh r 0)

IGS; a) =

time evolution with non-interacting Hamiltonian

|‘1’(f)> _ e—iﬁu_uf |GS;(_1'> _ Z (—I)N qu—‘ZiJ\"f I(DN>
N =0

2N

with [®n) =10,2N) gy = — <2f\"'>!(m"'“'>‘

coshr (N1)? 2

long-time average -
poo = W) (T(t) = ) qn |®PN) (D]
V={)

We will see that this state can be regarded as EP



EP feature 1 | thermal subsystem

reduced density matrix poo = [U()) (T(H)] = > qn |ON) (ON]
N=0
1
) = trepoeo D) = [0,2N) = 32V cmoN—m |m, 2N —m)

Cm.n = (‘m’+n) (_‘ 1)771, VvV Tr In!

m

(1) — Z Wm M) (M|

m=0

o

Wi = ZNZL‘IH/QJ qN |C'm.2N—m,|

w, o e P for n > 1
B=In(2cothr —1)

canonical distribution




EP feature 2 | diagonal/off-diagonal decomposition

poe = TN D = 3 an |n) (@n]  [®8) = X2V con2vm [m, 2N —m)
N=0

_d off-d
o0 2N
. . 2 r _ :
P = qN lemoN—m|* M, 2N —m) (m,2N — m)|
N=0 m=0
fos. 2N 2N

off-d : K
Px = E gN SJ SJ Cm,2N—mCm’ 2N —m/ Im, 2N — 77’1) <77’?,,, 2N — 77?.-’|
N=0 m=0 ’'=0
(m'#m)

Note tript =tripoe (i=1,2)

as long as we look at either subsystem,
the off-diagonal part does nothing



EP feature 2 | off-diagonal part is relevant

consider the correlation between the subsystems

P(z,y) = (z,y

plx,y) joint distribution function

109 ' - For the actual state
r = (.3
e, P(x,x) # P(x, —x)
103} N :.:1... 1
.,:f:_;f.,,. but,

10-6 |k P(@, +2), poo e g if we neglect the off-diagonal part,

P(z,—), Poo sesssss

P(z,+x), 5 amimm= P(CB, aj) — P(:E, _CE)




EPZE S it AF 7 Y > TIVIEAIH 7
canonical ensemble (max entropy with total energy constrained)

Pean X eXp(—ﬁHa:()) =5 e Pmtn) m n) (m,n|

I:Ia:() — Nl -+ NQ Nz — CL,}-LCLZ'

improvement | V;, N, are conserved separately

(-1)M-N: =1 jg satisfied in the actual state -> constrain

Zu £y -
Boan™ Z 7 Pon Py = Z,",:\;(, Im,2N — m) (m,2N — m)|
further improvement | constrain higher-order moments

/)C}fi Il —

=0 gN weight of the actual state

1 i (14\,*])-213\,' (TXTL:O (m — 27 37 o )



ENH “locality” D= _EF < WAL

locality = EE 5D DEARRICUNBERULBWVEEFEE EZFDTE
COWSREENSED 7YY TILIE
oﬁ—diagonald)%ﬁr%%’éi@b\

Pcan X Zm e Pmtn) Im n) (m, n|

© —28'N

C
/)Z'zm = Z 7 P‘ZN i
N=0 Poy = ) " o|m,2N —m) (m,2N —m|

!/
Pcan — E (1;’\"[)‘2]\"

N=0

P(x,x) = P(x,—x) no good

because P(x,x) # P(x,—x) forthe actual state



“nonlocal’ R fRFEZE AT EF <L

.‘.

remember ﬁ(,:o = aial + a..;ga,g — ajraqr +a_a_

1 2B ETCIdB<+/-EENSHFELT

RO 7 VGV TV EBRETE D

~

OoC

>~ o= Pello — (1 _e7F-) N e7A-N |0, N))(0, N|

PNL = —¢€
ZNL

N=0
PNL = } e~ Lo=z PoNo—7P- additional constraint
ZI\'L P = (_1)N_
w1 s gmpym_g g _p additional constraint
PNL = G € o = Poc .
S {N m_2

EXACT!
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FERBR NS HDRFEN DS ETIL

+hard-core bosons

L layers in the shape of triangles
N = 3L sites, N, = L particles

I:I = _Ztij(i);’ri)j —|—hC) [ =2
(i) .

local Zs symmetries on each layer
conserved operators P, (1 <1 < L) extensive number!

<ZEDREFEN 5 5 HIETHES
REBEIEELTHETREGRE SA U (f. BENT)
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L
+The model has G = @ZQ

. : [=1
+ (7 is abelian

—»Hilbert space: H = @Hq

(divided into |G| = 2" sectors 4

characterized by q := (), )}— glg_en_v?lue of P,

+ Hamiltonian is block-diagonalized:
Eo) € Hq for some Hq
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M.Rigol et al. Nature(2008)

+ Elgenstate thermallzatlon hypothesis (ETH)
& B IARE BVEEL KE

(Fa|O|Fa)

(Ea|O|Eq) = (O)

mic

3
(Eo) + AO, f
0

+ETH AT ov0h/ ZHILDHEHAEYtbLEI NS
Zlcal E,|O|Es) ~(0) . (Eo)
0)
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not conserved
due to randomness

» conserved

only one global [’ (fixed number)

Zi5 symmetry local Zo symmetries
F=0,1,23
F'= 0 has no Zs symmetry
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With increasing L,

(b), (c)F = 0: rapidly decrease
(c)F = 1,2,3: decrease (though less sensitively)

—» Canonical ensemble is valid
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