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“Nature isn't classical, dammit, and if you want to make a
simulation of Nature, you'd better make it quantum

mechanical, and by golly it's a wonderful problem, because it

doesn't look so easy.”
R. Feynman, Simulating Physics with Computers, Int. J. Theor. Phys. 21,467 (1982).

>s5FAvEa—45  -8EFZal—4

Kell et al., Nature 519,66 (2015)

W. S. Bakr et al., Nature 462, 74 (2009)



fli% IE
B ETEIEISEFEET 2DH?

X Ui

= ADOBHEIIEHIICIE X
S HHEETEEETIIEHEL LY,

“Nature isn't classical, dammit, and if you want to make a
simulation of Nature, you'd better make it quantum
mechanical, and by golly it's a wonderful problem, because it

doesn't look so easy.”
R. Feynman, Simulating Physics with Computers, Int. J. Theor. Phys. 21,467 (1982).

>s5FAvEa—45  -8EFZal—4

j%/\lb F?%%E

|

s,

SHE#ETCIEY=I 2L —Y

| ‘/75“5%& L/ UNTRIE S 7

— —— m— W. S. Bakr et al., Nature 462, 74 (2009)



i i DA e ks el b ¢

#HRIRRE
[ |0)

-
~—




i i DA e ks el b ¢

I

LN FE FEE

[ |0}

-
~—

NEFEwY b~
—
=2

\ 0

(BT Ly k) 1=7 U—REF@VRT)




i i DA e ks el b ¢

WIHRIRBE R il
[ 0) 7
ya 0) N
D
) 0) )
o
I '
8 .
| [0) 7




NEFEY ~

s+l a1—%

I

LN FE FEE

[ 0) )

&

-
~—

A 7E
N s
................................ 2= b
(A A=Y UEE
N
1EFEY
1=%5V)EE
N




NEFEY K

A
- 2

9 &
Ea1—

=S5F 1Y

==

R FEHE

IERIRRE

b = |

SIEIE:S,

(1o

=2

...........

.................................




NEFEY ~

a3 T

)RR A BRI Al
[ 10) N EEORTR(M)E
[ L HEEIC =2 L —
0) By g A $27 e NTE B
{ 0) — o B TR T = 2 7
o) t o




NEFEY ~

YIERIARE

f

0)

-
~—

-
~—

st

EEDEFREEEN)Z
Agglcy=alb—b
—g—%)(_ b\Tg%n-I-

BERE s

2o

L o

. 20

L o
—5 ) —EEF(2NXRIT)

B IBRTTESIN?

FegEEFdvEa1—4
=(FEDIL=_F VU EEF




#IERIRRE
( 0)
0)
A
~ 0)
3
|\.I_' o
I .
e
[0)
=451 —
| E“EE?ZE%%%
1 /1
H‘ﬁ(l

Sk

o

_11 ) o—i(/8)Z _ ( e

7YY —)EE

>

- ——/u\d)j— 9 IJ /:I:/‘-A-¥

EREDETFREEE) =
AERElCY=aL—bk
95 ENTEDET
HHEIBRTE SN 7

&A  YES!

PFeEEFIAE1—4

—— — —




hEEEFEIR

(b) CONTROLLED NOT

0 a’ a a - .
j , FAN OUT i EEDEFREERN)Z
b b 0 0 Y AEEvIal—k
A abla’b THIENTEBET
‘ TR [ F > \D
3 3o excrance 3140 BIABRTE DD
ﬁi O} I | &A  YES!
1 1}10
U
Z
o—0 2o o---i---o-o hEEEFIAYEa1—%
b PPN - b =b = __,L,\O):L 57 y Lf%?

. | L I SUM = ¢’ S —
—] ° IR/ T qd
BR g xc B! CARRY = d’
| H = R. P. Feynman, Quantum Mechanical

Computers, Optics News (1985)

|




#IERIRRE
( 0)
0)
A
~ 0)
3
|\.I_' o
I .
e
[0)
=451 —
| E“EE?ZE%%%
1 /1
H‘ﬁ(l

Sk

o

_11 ) o—i(/8)Z _ ( e

7YY —)EE

>

- ——/u\d)j— 9 IJ /:I:/‘-A-¥

EREDETFREEE) =
AERElCY=aL—bk
95 ENTEDET
HHEIBRTE SN 7

&A  YES!

PFeEEFIAE1—4

—— — —




NEFE Yk

PEEEICHELRER

IHRIREE i A%
[ 10) — A

0) T A\
< 0) — A\
10) . A\

1=45 ') —EEF(2NXRIT)



NEFEY

L
a
“u
"y
a
"a
]
......
"
u
.
"
“u
.

-
*
3
3
»
3
3
*
3
3
»
-
3
»
3
.
*
3
3
»
.
3
.
3
-
»
-
3
»
3
3
*
3
3
»
-
3
*
3
.
*
3
3
»
-
3
‘e
Y

#HRIRRE FFE &
oy — S —
0) i
O> I S L~
\ ‘O> B

.
3
*
3
3
»
L3
3
»
-
3
.
3
.
»
L3
3
*
3
3
.
3
3
‘e
3

.,

........... Control

| Kelly et al., Nature 519, 66 (2015)
on |

Hq oﬁJ_

=[O =
INZI)L N7 =R - 2B
K lCon-off L TW5.




NEFEY

& DR DS W) S |

R IR il

oy — o o — (N
O> .......... I’?\

(LT

\ ‘O> 1

.
3
*
3
3
»
L3
3
»
-
3
.
3
.
»
L3
3
*
3
3
.
3
3
‘e
3

A FIUVRATHERELZSH?

| Kelly et al., Nature 519, 66 (2015)
on |

Hq oﬁJ_

Ho L
Hy o

2O =

INTI)L T ZFE - ZBE]
K lCon-off L TW5.



Feynmang+31>kEa1—%

R. Feynman, Quantum mechanical computers, Opt. News, vol. 11, pp. 11-46, 1985
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Abstract

Recent work has shown that quantum computers can compute scattering proba-
bilities in massive quantum field theories, with a run time that is polynomial in the
number of particles, their energy, and the desired precision. Here we study a closely
related quantum field-theoretical problem: estimating the vacuum-to-vacuum transi-
tion amplitude, in the presence of spacetime-dependent classical sources, for a massive
scalar field theory in (1+1) dimensions. We show that this problem is BQP-hard; in
other words, its solution enables one to solve any problem that is solvable in polyno-
mial time by a quantum computer. Hence, the vacuum-to-vacuum amplitude cannot
be accurately estimated by any efficient classical algorithm, even if the field theory
is very weakly coupled, unless BQP=BPP. Furthermore, the corresponding decision
problem can be solved by a quantum computer in a time scaling polynomially with the
number of bits needed to specify the classical source fields, and this problem is there-
fore BQP-complete. Our construction can be regarded as an idealized architecture for
a universal quantum computer in a laboratory system described by massive ¢* theory
coupled to classical spacetime-dependent sources.
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DQCH1

one-clean qubit model (DQC1)
' Knill-Laflamme, PRL 81, 5672 (1998)
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e ey B2 146 fidelity decay, Jones ZIER,
— HOMFLYZ%IEZ{, Turaev-Viro~Z =
I/2" (J

— Poulin et al., PRL 92, 177906 (2004).
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DQC15

(one clean qubit with three-qubit measurement)

0)—ep N, pure input
j_ 7, postselection
— 7 yes or no
) 4
completely
mixed state '
_._

Morimae-KF-Fitzsimons, PRL 112, 130502 (2014)
KF-Kobayashi-Morimae-Nishimura-Tamate-Tani, ICALP2016 (arXiv:1509.07276)



DQC15

(one clean qubit with three-qubit measurement)

0)—ep mz pure input
j_ 7, postselection
) —— 7 yes or no
e ) L1 U
completely
mixed state '
_._
>

Apply X to the 1st qubit, if all
other qubits are 1.

Morimae-KF-Fitzsimons, PRL 112, 130502 (2014)
KF-Kobayashi-Morimae-Nishimura-Tamate-Tani, ICALP2016 (arXiv:1509.07276)



DQC15

(one clean qubit with three-qubit measurement)

If outcome is 1, the initial state is
a pure state [111...> |
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(one clean qubit with three-qubit measurement)

If outcome is 1, the initial state is
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— Classical simulation of DQC13is hard!

Morimae-KF-Fitzsimons, PRL 112, 130502 (2014)
KF-Kobayashi-Morimae-Nishimura-Tamate-Tani, ICALP2016 (arXiv:1509.07276)
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(commuting circuits) : (one-clean qubit model)
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Linear optical quantum computation
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M. A. Broome, Science 339, 794 (2013)

M. Tillmann et al., Nature Photo. 7, 540 (2013)
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N. Spagnolo et al., Nature Photo. 8, 615 (2014)
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BERShdY> 7V I DEK

- FERRERE (or IBEBYIC/INE WIERIERZE)

1 . .
Zpldea,l(x) < psamp(m) < Cpldeal(ib) (C ~ 1)

[Bremner-Jozsa-Shepherd, '14]
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* l1-norm D =R TE BN ERIFRZE
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[Aaronson Arkhipov, 11, Bremner Montanaro Shepherd 16]
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DQC1 1

(one clean qubit with three-qubit measurement)
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(random qubit)

KF-Kobayashi-Morimae-Nishimura-Tamate-Tani, ICALP2016 (arXiv:1509.07276)
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(one clean qubit with three-qubit measurement)
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KF-Kobayashi-Morimae-Nishimura-Tamate-Tani, ICALP2016 (arXiv:1509.07276)
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(one clean qubit with three-qubit measurement)
copy the output into the phase
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interference
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(one clean qubit with three-qubit measurement)
copy the output into the phase
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Let g1 = Tr[|1)(1]U(|0)(0])®"U"] be a probabilty " €%
of pure quantum computation.
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- P = 2—nql(1 —q1)

KF-Kobayashi-Morimae-Nishimura-Tamate-Tani, ICALP2016 (arXiv:1509.07276)
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(one clean qubit with three-qubit measurement)
copy the output into the phase
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Lot g1 = Tr[|1)<1|U(|O><OD®”UT] be a probability interference
of pure quantum computation. SBQP = SBQ+P
= 1
Lo 4 q1(1—¢q;) (Anefiicient dlassical simulation implies
P1 = Qn 91 PH=AM, collapse of PH to 2nd level)

KF-Kobayashi-Morimae-Nishimura-Tamate-Tani, ICALP2016 (arXiv:1509.07276)



Main idea: simulation of fault-tolerant
quantum computation under postselection
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ideal universal QC
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postselect the events where
no error syndrome is activated

arXiv:1610.03632



Main idea: simulation of fault-tolerant
quantum computation under postselection

logical output
g P \p(mv Y, Z)
p(z,y)
N ,X T faUIt' | >AX
_ — Hclassical ey
‘O>®n C | y tolerant processing
5 - =—» —|version [ - Z
B B ‘| with noisy
— circuits
ideal universal QC
error syndrome
Detect any erroneous event and p(z,y, |z = 0)
postselect more reliable quantum oostselect the events where
computation! no error syndrome is activated

arXiv:1610.03632



Threshold theorem for
quantum supremacy

- Part1: An exponentially small additive error is enough.

p(z,y)

0)°"

C

— X
Y

fault-
tolerant
version

—— Z <«— error syndrome

p(z,y) —plx,ylz =0)] <e™"

where « = poly(n) the overhead is polynomial in n. Then, classical simulation
of p(z,y, 2) with a multiplicative error 1 < ¢ < v/2 is hard.

- Part2: The exponentially small additive error
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— X
Y

fault-
tolerant
version

—— Z <«— error syndrome

p(z,y) —plz,ylz =0)| <e™"

where x = poly(n) the overhead is polynomial in n. Then, classical simulation
of p(z,y, 2) with a multiplicative error 1 < ¢ < v/2 is hard.

- Part2: The exponentially small additive error
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Part1: an exponential small
additive error Is enough

_ E— — fault- —
XN y y
0) 5 C ; - toler_ant —— Z «— error syndrome
- version

Solve a PP-complete problem (MAJSAT) using p(Z|y) as in [Aaronson05]
— probability for postselection: p(y = 0) > 27 %74
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Part1: an exponential small
additive error Is enough

15 gj’y) p(xayaz)
$ fault y
— I —_— au - I
Xn y y
0) 5 C ; —| tolerant —— z «— error syndrome
-| version

Solve a PP-complete problem (MAJSAT) using p(Z|y) as in [Aaronson05]
— probability for postselection: p(y = 0) > 27 %74

Therefore, it |p(x,y) — p(z,y|z = 0)] < e” " with kK = poly(n)
then we have
pzly =0) —p(zly =0,z =0)] < 1/2

- p(w, Y, Z) can solve the PP-complete problem under postselection.

arXiv:1610.03632



Threshold theorem for
quantum supremacy

- Part1: An exponentially small additive error is enough.

p(z,y)

0)°"

C

— X
Y

fault-
tolerant
version

—— Z <«— error syndrome

p(z,y) —plx,ylz =0)] <e™"

where « = poly(n) the overhead is polynomial in n. Then, classical simulation
of p(z,y, 2) with a multiplicative error 1 < ¢ < v/2 is hard.

- Part2: The exponentially small additive error
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IS achievable by quantum error correction under postselection.



Part2: error reduction under
postselection (sketch)

Initial state

fault-tolerant circuit

iIncluding classical processing

AN
— Pev = 1z, y)(T, Y]
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AN
— Pev = 1z, y)(T, Y]

U = H(N Uk )
initial state —T 1 K
0) — U ([N
00— == ..
| UaliNS U UG
0) —
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Part2: error reduction under
postselection (sketch)

stochastic s — (1 —e,)T + &

noise

Initial state

Mn()lsy _ H NkZ/{k

U

u Nl

ideal operation

\i”‘ap /

/7\ a:,y — ‘Qj,y><x,y|

Us)|

Nol— UL NG

iIncluding classical processing
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Part2: error reduction under
postselection (sketch)

stochastic s — (1 — €x)T + & ideal operation

Z/{nOISy — H NkZ/{k — P, , =z, y){x,y]
initial state —1 '}
O>— U, Nl Nz QZ:‘Z><Z‘
O} = — error syndrome
N Z/[Q-NQ Z/{k; Nk—
0)— ' ' p(z,y, 2) |
fault-tolerant circuit — Tr[Pa;,y Q. U™ (,Oini)]

iIncluding classical processing
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Part2: error reduction under
postselection (sketch)

Using NV = (1 — €,)Z + &, we decompose U™ into
Z/{noisy (pini) — Psparse + Pfaulty

such that p(x,y) o< Tr| Py Q) .=0pPsparse) -
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Part2: error reduction under
postselection (sketch)

Using NV = (1 — €,)Z + &, we decompose U™ into
Z/{noisy (pini) — Psparse + Pfaulty

such that p(x,y) o< Tr| Py Q) .=0pPsparse) -

Then we can show that
Hﬁ($,y) _p(xvy‘z — O)Hl < 2||10faultyH1/q,z:O

where ¢,—g = Tr[QZZOMHOiSy (Pini)]- (prob. of null syndrome

measurement)
<2300 (5) o= mpxa
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There is a constant threshold & below which
the output p(z,y, 2) = Tr[Pr , Q.U (pini)]

from the noisy quantum circuits cannot

be simulated efficiently on a classical computer
unless the PH collapses to the 3rd level.
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- Motivations

-+ Hardness proof by postselection
- Threshold theorem for guantum supremacy

- Applications: 3D topological cluster computation &
2D surface code

- Summary
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Topological MBQC on a 3D
cluster state

- MBQC on a graph state of degree log(n)
(corresponds to commuting circuits of depth log(n))

- Noise: independent single-qubit dephasing w prob. €
(phenomenological noise model)

» Faulty part comes from either clifford operations or
magic state distillation  Pfaulty = Pcl T Pmagic

Clifford operations 19 5e
) (

(counting # of self-avoiding poly
walks: Dennis et al ‘02) 5 1] — €

d
> » Cc] — 0.167

magic state distillation > €magic — 0.146
(Bravyi-Kitaev ’05; Reichardt ‘06)

see also KF-Tamate ‘16



Noisy quantum circuits
above standard noise threshold

distillability of C aooCally

noise threshold of magic state SIMulatable
universal QC by GK theorem

noisy

classical simulation
is hard!
. . 0 .
phenomenological noise 2.9-3.3% phenomenological magic

circuit-pased noise 0.75% noise 14.6% ,,,

atatn



Circuit-based noise model
with 2D surface code

- 2D nearest-neighbor gates on a square grid

- circuit-based depolarizing noise model:
prep., meas., 1- and 2-qubit gates with
probability p.
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- 2D nearest-neighbor gates on a square grid

3 .+ circuit-based depolarizing noise model:
}(1’2) (O  prep., meas., 1- and 2-qubit gates with
5 i  probability p.

= <1 = v>1/2 {(1-111/) " (12—“;)]]/2

v: Independent error rate

w: correlated error rate
v =>54p/15, 4 = 6p/5
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Circuit-based noise model
with 2D surface code

arXiv:1610.03632

- 2D nearest-neighbor gates on a square grid

- circuit-based depolarizing noise model:

prep., meas., 1- and 2-qubit gates with
probability p.

= <1 = v>1/2 {(1-111/) " (12—“;)]]/2

v: Independent error rate

w: correlated error rate
v =>54p/15, 4 = 6p/5

» threshold value: p=2.84% (distillability of

magic state)

- higher than the standard threshold 0.75%



