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はじめに
量子系の自由度は指数的に増える．
→古典計算機では難しい．
“Nature isn't classical, dammit, and if you want to make a 
simulation of Nature, you'd better make it quantum 
mechanical, and by golly it's a wonderful problem, because it 
doesn't look so easy.”
 R. Feynman, Simulating Physics with Computers, Int. J. Theor. Phys. 21, 467 (1982).

→量子コンピュータ・量子シミュレータ

W. S. Bakr et al., Nature 462, 74 (2009)

Kelly et al., Nature 519, 66 (2015)
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物理をシミュレートできる万
能な計算機は存在するのか？

古典計算機ではシミュレーショ
ンが難しい領域は？
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KitaevによるQMA問題（NP問題の量子版）の基礎となり、
ハミルトニアン複雑性の研究へと発展・より簡単なモデルへ



様々な万能量子計算モデル

量子回路型

万能計算を埋め込むために利用する自由度

時間・空間的にハミルトニアンを変動

Feynman型 定常ハミルトニアン

断熱型
Aharonov et al, ‘04

(QMA-hardness経由)

定常ハミルトニアン＋断熱操作(横磁場イジングはダメ Bravyi et al ‘06)

オートマトン型 定常並進対称ハミルトニアン＋初期状態

[4-local: Feynman’85, 2-local: Nagaj  ’10&12]

[5-local: Kitaev ‘02, 3-local: Kempe-Kitaev-Regev’06;  2D 2-local 
Oliveira-Terhal ’08; 2D fermions: Schuch-Verstraete ’09, 1D 2-local: 
Aharonov et al ‘09; 2D XY: Cubitt-Montanaro ’13, and many more]

量子ウォーク型 定常ハミルトニアン
[adjacency matrix: Childs’09,bosons&fermions: Childs-Gosset-
Webb’13, and many more]

定常並進対称ハミルトニアン＋時間的に変動
 [2D local: Janzig-Wocjan ‘04]

 [1D local: Raussendorf ‘05]



量子ダイナミクスの計算複雑性の
特徴づけ

[難しさ] 万能量子計算モデル（量子回路モデ
ル）へと帰着させる←すでに述べた
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[簡単さ] 古典計算機で効率よくシミュレーション
できることを示す←これから少し紹介する
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[簡単さ] 古典計算機で効率よくシミュレーション
できることを示す←これから少し紹介する

[やや難しさ] 非万能計算モデルの古典計算機によ
るシミュレーションが困難性を示す 
←ちょっと難しい（けど量子と古典の境界に位置）



古典模倣可能なモデル

(1)Clifford量子回路(Gottesman-Knill定理) 

(2)離散ウィグナー関数の正値性 

(3)量子ディスコードのないダイナミクス 

(4)Matchgate量子回路(free-fermion)

[Mari-Eisert ‘12, Vetch et al ‘12, Deflesse et al ‘15, Raussendorf et al ‘15]

[Eastin ’10, Cable-Browne ’12, (Datta-Shaji-Caves ’08)]

[Valiant ‘02; Terhal-DiVincenzo ‘02;Knill ‘01; Jozsa-Miyake ‘08, Jozsa-
Kraus-Miyake ‘10, and many more]

classically simulatable
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       を簡単に計算できるユニタリ演算子
＝Clifford演算子(パウリ群を不変にする=正規部分群にもつ)
→効率良く古典シミュレーションができる(Gottesman-Knill定理)

{Si}

ハイゼンベルグ描像
状態を”特徴付ける”演算子

{Zi}
(=固有状態に持つ演算子)

{Si} Si ⌘ UZiU
†

stabilize



(非)Clifford演算

H =
1p
2

✓
1 1
1 �1

◆
アダマール演算

UCNOT = |0ih0|⌦ I + |1ih1|⌦X

=

0

BB@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1

CCA

CNOT(制御NOT)

HXH = Z

HZH = X
UCNOT(X ⌦ I)UCNOT = X ⌦X
and so on….Clifford演算
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量子と古典の境界

量子テレポーテーション：
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T状態によるリソース理論
[Howard-Campbell ‘16]

古典シミュレーションの改善
[Bravyi-Gosset ’16] ⇠ 20.23#T
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[Valiant ‘02; Terhal-DiVincenzo ‘02;Knill ‘01; Jozsa-Miyake ‘08, Jozsa-
Kraus-Miyake ‘10, and many more]
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partition functions
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complexity
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QSZK
(black hole
 firewall)

量子の複雑性の特徴づけ

scalar field theory
[Jordan-Lee-Preskill, 
Jordan et al]
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問題のサイズに対して
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条件付き確率分布を用いて問題を解いていい（すごくレアな
イベントをコストをかけずに利用できる）
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事後選択という仮想の能力を仮定することによって，
古典と量子の複雑性の違いが明らかになる!!

Aaronson, Proc. of the Royal Society A: Math., Phys. and Eng. Sci. 461, 3473 (2005). 
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Poulin et al., PRL 92, 177906 (2004). 
Shor-Jordan, QIC 8, 681 (2008)完全混合状態
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[Bremner-Jozsa-Shepherd, ’14]

要求されるサンプリングの意味
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まとめ
• 量子系のダイナミクスの複雑性に対する量子計算のアプ
ローチを紹介した． 

• 量子系のダイナミクスが関係する物理現象(局在化・孤立量子
系の緩和・スクランブリング)にこのようなアプローチが使えれ
ば面白いと思う． 

• 非万能量子計算モデルの特徴づけについて紹介した． 

• 事後選択による古典模倣困難性の証明には堅牢性がある
ことを示した． 

• 雑音のある量子回路における量子・古典の境界を鮮明に
引くことができた．
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of pure quantum computation.

→

q1 = Tr[|1ih1|U(|0ih0|)⌦nU †]

p1 =
4

2n
q1(1� q1)

p1

(An efficient classical simulation implies 
PH=AM, collapse of PH to 2nd level)

SBQP = SBQ1P
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ideal universal QC

Detect any erroneous event and 
postselect more reliable quantum 
computation!
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p̄(y = 0) > 2�6n�4probability for postselection:
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There is a constant threshold εth below which
the output 
from the noisy quantum circuits cannot 
be simulated efficiently on a classical computer 
unless the PH collapses to the 3rd level. 
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Noisy quantum circuits 
above standard noise threshold

Threshold theorem: if the noise strength is smaller than a certain constant 
threshold value, quantum computation can be done with an arbitrary 
accuracy poly(logarithmic) overhead. 

phenomenological noise 2.9-3.3%
circuit-based noise 0.75% 

R Raussendorf, J Harrington and K Goyal
New Journal of Physics 9 (2007) 199
Ann. Phys. 321 2242 (2006)

universal QC
noise threshold 

classically 
simulatable
by GK theorem

phenomenological 
noise 14.6% magic 

state

convex 
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states x
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distillability of 
of magic state

noisyclean classical simulation 
is hard!
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