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Preface

This is a self-contained advanced textbook on quantum many-body systems, which
is intended to be accessible to students and researchers in physics, mathematics,
quantum information science, and related fields. The prerequisite is undergraduate-
level basic knowledge of quantum mechanics, calculus, and linear algebra. We dis-
cuss in detail selected topics in quantum spin systems and lattice electron systems,
and also describe fundamental concepts and important basic results necessary to un-
derstand the advanced topics of the book (and, of course, other related results in the
literature).

More specifically, we focus on long-range order and spontaneous symmetry
breaking in the antiferromagnetic Heisenberg model in two or higher dimensions
(Part I), the Haldane phenomena in antiferromagnetic quantum spin chains and the
related notion of symmetry protected topological phase (Part II), and the origin of
magnetism in strongly interacting lattice electron systems, namely various versions
of the Hubbard model (Part III). Although the selection of the topics is certainly
biased by our research interests, we believe that each topic is, by itself, interesting
and worth studying. More importantly each of the topics represents certain non-
trivial phenomena or features that we universally encounter in a variety of quan-
tum many-body systems, including quantum field theory, condensed matter systems,
cold atoms, and artificial quantum systems designed for future quantum computers.
In other words, although most of the systems that we treat in the book are models of
magnetism in a broad sense, our interest is not limited to magnetism. We are more
interested in universal behaviors of quantum many-body systems.

As the title suggests, we here take the point of view of mathematical physics.
Our major goal is to discuss mathematically rigorous results which are of essential
importance and interest from physicists’ point of view. We shall also discuss in
depth physical intuitions and pictures behind the mathematical results.

We believe it crucial to insist on mathematically rigorous proofs (when available)
since some phenomena in many-body systems are so intricate and subtle that it is
not easy for us to reach the right conclusions based only on naive physical intu-
itions. It is also worth stressing that, in some (but not all) cases, one gets deeper and
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clearer understanding of “physics” by appreciating a mathematical proof of a certain
physical statement. We hope that the reader will have such experiences by studying
some of the theorems and proofs in the present book. We have indeed tried to omit
proofs which are too technical, but include those which are enlightening and worth
studying. Moreover most of the proofs discussed in the book have been considerably
reorganized and extended so as to make them as elementary and accessible as pos-
sible. To give an example, the famous theorem of Lieb’s on the half-filled Hubbard
model (Theorem 10.4 in page 343) is among the most significant contributions of
modern mathematical physics to the theory of strongly interacting quantum many-
body systems. Although the paper containing the theorem has been frequently cited
both in theoretical and experimental papers, and the content of the theorem is well-
known, it seems that one usually assumes that the proof of the theorem is too difficult
to comprehend. We shall however present an elementary and detailed exposition of
the complete proof which should be understandable to a sufficiently motivated un-
dergraduate physics student with standard background in mathematics; we do not
make use of anything more advanced than diagonalization of Hermitian matrices!
(We also should stress that the book is designed in such a manner that one can skip
proofs and only appreciate heuristic arguments and rigorous results.)

We do not, on the other hand, go into mathematical formulations which are too
advanced, e.g., the operator algebraic formulation of infinitely large quantum many-
body systems. Although such sophisticated formalisms have their own merits in de-
riving stronger results and further extending our physical intuitions, we shall not try
to go too much beyond standard formalism of undergraduate quantum mechanics.
When treating infinite systems, we try to choose the most elementary formulation,
and also carefully introduce and explain necessary notions.

The restriction to non-relativisitc lattice quantum systems has a clear advan-
tage that relatively satisfactory rigorous results are available. One may, for exam-
ple, study phenomena parallel to those treated in Parts I or II in the framework of
quantum field theories, or discuss the origin of magnetism, which is the topic of
Part III, starting from the many-body Schrödinger equation for all the electrons and
the nuclei that form a magnetic material. But our current (theoretical-physical and
mathematical) understanding of these frameworks is so poor that we still have to
struggle in obtaining very elementary results (or even defining the system itself) if
we insist on mathematical rigor; there is no hope of treating interesting physical
phenomena. By concentrating on lattice systems, where conceptual issues are con-
siderably simpler, we are able to concentrate on the essence of interesting “physics”
and mathematical mechanisms behind it. We shall discuss this point further in sec-
tion 1.1.

We assume that the reader is familiar with elementary quantum mechanics in-
cluding the theory of angular momentum. Some experiences in statistical mechan-
ics and condensed matter physics are welcome but by no means necessary. As for
mathematics, we only assume basic calculus and linear algebra. Although some
mathematical arguments are motivated from functional analysis, we do not require
any familiarity with functional analysis (or any other advanced mathematics). We
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shall frequently refer to Z2, U(1), or SU(2) symmetry, but we do not require any
knowledge in (continuous) group theory. What one should know is explained.

This means that at least a large part of the present book is accessible to suffi-
ciently motivated undergraduate students. The readers with background in mathe-
matics or quantum information science may notice our heavy use of the theory of
quantum mechanical angular momentum. This is nothing but the representation the-
ory of SU(2), but we physicists are so much used to it since undergraduate quantum
mechanics classes. For the non-physics-major readers, we have summarized neces-
sary material about angular momentum in the appendix.

We believe that the material in the present book can be used in several different
ways in graduate courses in theoretical or mathematical physics. The author him-
self has given a half-year course which covers selected topics from Parts I and II,
or another course which focuses on topics from Part III. At the time of writing,
when many researchers and students are interested in topological phases of matter,
a course which covers selected topics from Part II may be attractive.
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List of Symbols

▷ A := B or B =:A means that A is defined in terms of B.
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boundary conditions (page 49):

BL =
{
{x,y}

∣∣x,y ∈ ΛL, |x− y|= 1
}

(3.1.3)

▷ For x = (x1,x2, . . . ,xd) ∈ Zd , we denote the Euclidean norm as
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...
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t is the row vector vvv† =
(v∗1, . . . ,v

∗
D). For column vectors vvv and uuu = (u1, . . . ,uD)

t, we denote by ⟨vvv,uuu⟩ =
vvv†uuu = ∑D
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Chapter 1
Introduction

1.1 Universality in macroscopic physics

It is fair to say that one of the goals of physical science is to understand the world
around us on the basis of the fundamental laws of physics. However, if we naively
consider the task of understanding the properties of, say, a piece of metal sitting in
front of us, we may be led to conclude that such an understanding is simply im-
possible. Of course we know the basic structure of the atoms composing the metal,
and we have some knowledge about the crystalline structure of the metal and the
basic properties of the electrons in the metal, including the band structure and the
interactions between them. But all of this amounts to nothing more than approxi-
mate descriptions. How can we have a precise understanding without knowing, for
example, the exact form of the many-electron wave function that spreads over the
entire crystal? Moreover, an actual, macroscopically large piece of metal under ordi-
nary conditions will generally not be a perfect crystal. Instead, it will contain many
impurities and dislocations. Further, it may have a surface with an irregular form
and be interacting with an external world that behaves in a complicated, uncon-
trolled manner. Focusing on more microscopic levels, we know that the nuclei in
the metal are composed of quarks, whose behavior should be described by quantum
chromodynamics (while a full QCD calculation of even a small nucleus requires a
supercomputer). In addition to such comparatively practical problems, there is the
essential limitation that we do not possess an ultimate microscopic theory that could
provide an exact description of this piece of metal.

Despite the problems raised above, we would like to argue that a nontrivial un-
derstanding should be possible. We believe that the possibility for obtaining such
an understanding is due to the universality we repeatedly encounter in macroscopic
physics. The purpose of this short section is to (attempt to) convince the reader of
this point.

One important aspect of universality is robustness. We find that, in many (but, of
course, not all) problems of physics, the behavior of an object as a whole is insensi-
tive to many details regarding both its own composition and the environment within

1



2 1 Introduction

which it exists. For example, the center-of-mass motion of a sufficiently heavy rigid
body on Earth is very accurately described by the Newton’s second law of motion
for a point particle under uniform gravitational field, and in many cases, will be
almost completely independent of the internal structure of the object and the pres-
ence of other objects in its proximity, other than Earth itself. Indeed it may be that
the existence of such robustness is a necessary condition for the possibility of con-
structing an intelligible body of physical science.1 Returning to our piece of metal,
we wish to be optimistic, and we posit that some of its properties can be understood
reasonably well without knowing, say, very precise forms of its electronic orbits, the
exact locations of its impurities and dislocations, the shape of its surface, what our
next-door neighbor is doing, the position of the moon, or the equations of a “theory
of everything.”

The other important aspect of universality is that, in many cases, we observe the
same phenomenon in a variety of physical systems. A notable example is the phe-
nomenon of wave propagation. While wave propagation is found in many forms,
the same wave equation describes wave motion in a variety of media, including air,
water, and elastic material, and even in vacuum in the case of electromagnetic field.
A conceptually deeper example is provided by thermodynamics. We know that the
same set of nontrivial (and mathematically beautiful) laws of thermodynamics apply
with great accuracy to essentially any macroscopic system in equilibrium [27, 36].
Due to the general validity of the theoretical descriptions provided by the wave
equation and the laws of thermodynamics, in either case, we can make definite pre-
dictions concerning the actual behavior of individual systems from this general de-
scription, without the need to investigate the particular properties of the individual
systems themselves.

With regard to the relationship between a physical system and the behavior it
exhibits, the conventional thinking is that, in some sense, the system possesses a
primary existence, while the behavior it exhibits possesses a derivative existence,
dependent on the system. However, the above discussion hints at another interpre-
tation. Considering the cases of wave propagation, thermodynamic behavior, and
the many other types of universal structures observed in the world, we are tempted
to imagine that these universal structures themselves possess a primary existence,
independent of any individual system, while they become “incarnated” in various
concrete forms in actual physical systems.2 But, irrespective to our philosophical
point of view, there is no doubt that it is a task of essential importance to discover
and understand universal phenomena and universal structures that are independent
of the individual systems in which they are observed. Returning again to our piece
of metal, our goal, from the point of view of universality, should be to find character-

1 We can try to imagine a world in which all minute aspects of all elements are strongly interlinked.
In such a world, any prediction of the behavior of a given element would be practically impossible,
because this would require detailed knowledge of the behavior of all other elements. But this is not
the world we live in. (Indeed it would seem quite likely that no intelligence could evolve in such
an unpredictable world.)
2 See Chapter 1 of [36] for further discussions of the view based on the notion of universality.
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istic and essential phenomena taking place in it, and then to understand the universal
structures behind them.3

In our pursuit to advance fundamental science, with the manner of thinking de-
scribed above, we are led to study classes of systems defined by characteristic types
of universal phenomena, rather than actual individual systems. Let us call such a
class of systems a “universality class.”4 Within a given universality class, we will
have not only actual physical systems and faithful theoretical models describing
them (which usually have intractable details), but also some idealized theoretical
models that appear to be easier to treat. It should be stressed, however, that such ide-
alized models are not simply “made up” to exhibit the desired properties (for some
obvious reasons). Rather, they are nontrivial systems that capture only the essence
of the phenomena that we wish to understand.5 By studying such idealized models,
we are able to directly confront the problem of elucidating the essential behavior of
interest. Perhaps the best example of such an idealized model is the (classical) Ising
model. Although the Ising model is now recognized as a model of a ferromagnet,
it is too simple to be a faithful model of any actual magnetic system. Nevertheless,
we can learn from the Ising model extremely rich essence of phase transitions and
critical phenomena associated with the breakdown of Z2 symmetry, exhibited by
various physical systems, including uniaxial ferromagnets and some quantum field
theories. It should be pointed out that, despite its relative simplicity, the Ising model
is certainly not easy to solve. However, because with this model, one need not treat
some of the very complicated problems involved with more realistic models, such
as the overlap of electron orbits that determines the exchange interaction and the
ultraviolet divergence that must be removed to realize a well-defined field theory,
the core problem that we wish to address — that of describing the collective behav-
ior of infinitely many interacting degrees of freedom — is laid bare. This problem
is indeed central to understanding the large-scale behavior of a truly vast range of
physical systems.

In this book, we treat selected topics in quantum many-body theory that are di-
rectly related to important universal phenomena observed mainly in condensed mat-
ter systems. We have chosen topics that are of importance from both physical and
mathematical points of view. The Heisenberg model and its variants for spin systems
and some versions of the Hubbard model for electron systems, which we study in
detail throughout the book, are idealized models representing important universal-
ity classes in many-body physics. These models play roles in the study of quantum
many-body systems analogous to that played by the Ising model in the study of

3 Of course we do not argue that this is the only goal. System-dependent properties are important
in many applications.
4 In conventional usage, the term “universality class” refers to a class of statistical mechanical
models (or field theories) that exhibit quantitatively identical critical phenomena. Here we are
using this terminology in a broader sense.
5 In most cases, such an idealized model is related to other members of the universality class only
through uncontrolled approximations, heuristic arguments, or optimistic hope. It is an extremely
challenging problem in theoretical physics to establish firmer connections between complicated
and realistic models and simple idealized models. To do so probably requires highly advanced and
flexible versions of the renormalization group method.
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ferromagnetic systems. We hope that the reader will find the in-depth theoretical
studies of these models presented here, which are rooted in our desire to understand
a piece of metal sitting in front of us6, both fruitful and enjoyable.

1.2 Overview of the book

We shall give a brief and informal overview of the topics covered in the present
book.7

We start from a preparatory chapter (Chapter 2), in which we discuss the basics of
quantum spin systems. We encourage the reader to first briefly examine this chapter,
no matter what his/her main interest is. The reader may skip the details and come
back to them later when necessary.

One of the important results discussed in this chapter is the Marshall-Lieb-Mattis
theorem (Theorem 2.2 in page 38) [28, 26]. Consider, for example, the antiferromag-
netic Heisenberg model on the d-dimensional L×·· ·×L hypercubic lattice with the
Hamiltonian

Ĥ = ∑
x,y

ŜSSx · ŜSSy, (1.2.1)

where x and y are summed over neighboring pairs of sites. (Note that we are using
informal notations in this section. We will be more careful in the later sections.) The
Marshall-Lieb-Mattis theorem states that, when L is even, the ground state (i.e., the
eigenstate with the lowest eigenvalue) of Ĥ is unique and hence preserves all the
symmetry of Ĥ including, most importantly, the rotational symmetry. We note that
in the corresponding ferromagnetic Heisenberg model

Ĥ =−∑
x,y

ŜSSx · ŜSSy, (1.2.2)

one gets a large number of ground states in which spins are aligned with each other
and pointing in an arbitrarily chosen directions. This comparison already suggests
that there is something “more quantum” in antiferromagnets than in ferromagnets,
and that the Marshall-Lieb-Mattis theorem touches the essence of this difference.

It may be worth noting that the difference between antiferromagnetic and ferro-
magnetic systems is apparent even in the simplest possible quantum spin systems,
namely, that of two spins with spin quantum number S = 1/2. It is easily found
that the ground state of the antiferromagnetic Hamiltonian Ĥ = ŜSS1 · ŜSS2 is the unique
singlet state

6 A piece of iron exhibits metallic ferromagnetism, a phenomenon that is still poorly understood
theoretically. In the final section of this book, we present a very preliminary attempt at understand-
ing metallic ferromagnetism.
7 To the reader interested in the connection of our mathematical-physical approach to the standard
condensed matter physics, we recommend the book by Fazekas [11].
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|Φ0,0⟩=
1√
2

(
|↑⟩1|↓⟩2 −|↓⟩1|↑⟩2

)
, (1.2.3)

which is rotationally invariant, while the ground states of the ferromagnetic Hamil-
tonian Ĥ =−ŜSS1 · ŜSS2 are the triplet states

|Φ1,1⟩= |↑⟩1|↑⟩2, |Φ1,0⟩=
1√
2

(
|↑⟩1|↓⟩2 + |↓⟩1|↑⟩2

)
, |Φ1,−1⟩= |↓⟩1|↓⟩2,

(1.2.4)
and their linear combinations. (The reader who is not familiar with these notions
should not be discouraged; they will be explained in the later sections.)

In Part I of this book, we focus on the problem of spontaneous symmetry break-
ing and long-range order, which are among the most universal phenomena encoun-
tered in physical systems with large degrees of freedom.

A prototypical model is the antiferromagnetic Heisenberg model (1.2.1). It is
known that the ground state of the model in two or higher dimensions has antiferro-
magnetic long-range order (LRO), in the sense that spins separated far away on the
lattice are still correlated because of the antiferromagnetic interaction. The proof of
the existence of LRO, based on the reflection positivity method due to Dyson, Lieb,
and Simon [8], is one of the most important achievements of mathematical physics
for quantum-many body systems. We shall carefully describe the proof of the the-
orem by Kennedy, Lieb, and Shastry (Theorem 4.1 in page 73) [21]. We hope that
our detailed account of the method of reflection positivity in quantum spin systems
is accessible to a wide range of readers.

Given the existence of LRO, one naively expects that the ground state resembles
the Néel state, in which spins are pointing in the alternating directions. See Fig-
ure 3.1 (page 48). Such a ground state can only appear as a result of spontaneous
symmetry breaking (SSB) because the directions of spins should be chosen arbi-
trarily. However this picture is in conflict with the aforementioned Marshall-Lieb-
Mattis theorem. The unique ground state must have complete rotational invariance,
and it is impossible for a spin to point in a certain fixed direction. Thus the exact
ground state of (1.2.1) does exhibit LRO, but does not exhibit SSB. This conclusion
is physically rather mystifying since states with Néel order are observed experimen-
tally at very low temperatures.

This “mystery”, which was already known in 1950’s, has been almost completely
resolved by now. It turns out that the ground state with LRO but without SSB is
accompanied by a series of excited states, known as “Anderson’s tower”, which
have very low excitation energies [3, 5]. A physical ground state with both LRO and
SSB, which should be observed experimentally at very low temperatures, is not an
exact energy eigenstate but is a superposition of the exact ground state and a large
number of the low-lying excited states. This in turn means that the exact ground
state is a kind of Schrödinger’s cat, in the sense that it is a superposition of various
physical ground states.

The above picture has been confirmed rigorously by Koma and Tasaki [24],
whose works are based on earlier pioneering works on discrete symmetry breaking
by Horsch and von der Linden [16] and Kaplan, Horsch, and von der Linden [19].
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We shall discuss these rigorous results carefully, starting from an elementary but
important example, namely, the quantum Ising model, and proceed to the difficult
case of the Heisenberg model, where one encounters an ever-increasing number of
low-lying excited states which form the “tower”. We also briefly discuss how LRO
naturally leads to SSB in the ground states of infinitely large systems. Although we
do not go deeply into operator algebraic formulation of quantum many-body sys-
tems, which provides a sophisticated description of infinite systems, we shall discuss
some essential points so that the reader can appreciate the flavor of the advanced for-
mulation. In the course of discussion, we also give an important remark about the
role of symmetry in the notion of phases. See Figures 3.5 and 3.6 (page 61).

One encounters “LRO without SSB” in ground states of various quantum many-
body systems in which the order operator and the Hamiltonian do not commute.
Examples include not only quantum antiferromagnets, but superconductivity, Bose-
Einstein condensation, and a variety of quantum field theories. Since there is a fun-
damental difference between spin systems and particle systems, we shall discuss
in detail the phenomenon of Bose-Einstein condensation in the Bosonic Hubbard
model, placing main emphasis on LRO and SSB.

In this part we also give a quick overview of LRO and SSB in quantum Heisen-
berg model at nonzero temperatures. This includes (probably the first) proof of a
stronger version of the famous Hohenberg-Mermin-Wagner theorem about the ab-
sence of symmetry breaking in two dimensions.

The topic of Part II, topological phases of matter in quantum spin chains, is no
doubt the most fashionable among the subjects treated in this book. As mentioned
already, the reader may directly start from this part, after taking a glance at Chap-
ter 2.

The main theme of the study is still the antiferromagnetic Heisenberg model
(1.2.1), but the one defined on the one-dimensional lattice (which is often called the
chain). It has been known for quite a long time that, unlike in higher dimensions, the
ground state of the one-dimensional model does not exhibit any long-range order.
The nature of the ground state for the most basic model with S = 1/2 had been stud-
ied by using the Bethe ansatz method. (Here S denotes the spin quantum number,
which takes the values S = 1/2,1,3/2,2, . . ..) It was found that the ground state is
critical, i.e., the correlation functions decay with power law, and there are gapless
excitations immediately above the ground state.

In 1983, Duncan Haldane, who received the 2016 Nobel prize in physics mainly
for this contribution, discovered that there is a qualitative difference between the
low energy properties of the models with a half-odd-integral spin and an integral
spin [14, 15]. According to Haldane, properties of the spin S Heisenberg antiferro-
magnetic chain are basically the same as those for S = 1/2 when S is a half-odd-
integer, such as 3/2 or 5/2. However, when S is an integer, low energy properties are
completely different. The correlation functions decay exponentially, and there is a
nonvanishing energy gap (now known as the Haldane gap) above the ground state
energy. One can say that the ground state of an integer spin chain is disordered.

It seems that Haldane’s conclusion was totally against common beliefs of ex-
perts of the day. This may be the reason why people referred to his conclusion as
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the “Haldane conjecture” in the1980’s.8 The validity of Haldane’s conclusion was
gradually established through a series of experimental, numerical, theoretical, and
mathematical works.

A strong theoretical (and mathematical) support to Haldane’s conclusion was
provided by Affleck, Kennedy, Lieb, and Tasaki in 1987 [1, 2]. They proposed a
model of S = 1 antiferromagnetic spin chain whose ground state can be written
down explicitly. The Hamiltonian of the model, now called the AKLT model, is
given by

ĤAKLT =
L

∑
x=1

{
ŜSSx · ŜSSx+1 +

1
3
(ŜSSx · ŜSSx+1)

2}, (1.2.5)

which has extra biquadratic terms when compared to the original Heisenberg Hamil-
tonian (1.2.1). As we shall discuss in detail in Chapter 7, it was proved that the model
possesses the precise properties that Haldane had predicted for integer spin chains,
i.e., the ground state is unique, accompanied by a gap, and has exponentially decay-
ing correlations. It is now believed that the AKLT model represents the universality
class of models exhibiting Haldane phenomena.

It also turned out that the ground state of the AKLT model is an example of a
class of states called the matrix product states (MPS) proposed and formulated by
Fannes, Nachtergaele, and Werner in 1989 [9, 10]. The formulation of MPS provides
an extremely efficient way of approximately describing a large class of states in
one-dimensional quantum many-body systems, and has been playing indispensable
roles in condensed matter physics, mathematical physics, and quantum information
science. Section 7.2.2 of this book can be read as a tutorial introduction to MPS
motivated by the AKLT model.

The ground state of the AKLT model is not only disordered but has two unex-
pected exotic properties, namely, the hidden antiferromagnetic order and the effec-
tive S = 1/2 degrees of freedom at the edge of an open chain. It was later pointed
out by den Nijs and Rommelses [7] and by Kennedy [20] that these exotic properties
are shared by a class of models which includes the Heisenberg model. Kennedy and
Tasaki noted that these properties can be interpreted as consequences of spontaneous
breakdown of the hidden Z2 ×Z2 symmetry [22].

All these observations suggest that the S = 1 antiferromagnetic Heisenberg chain
and the AKLT model, which have exotic disordered ground states, belong to a new
quantum phase which should be called the “Haldane phase”. The true nature of the
new phase remained unclear until Gu and Wen pointed out in 2009 that the Hal-
dane phase should be identified as a symmetry protected topological (SPT) phase
[13]. Pollmann, Turner, Berg, and Oshikawa soon determined the complete set of
symmetry necessary to protect the Haldane phase, and also defined indices (within
the MPS formulation) that characterize the topological phases [33]. We present in

8 In mathematics a plausible statement is called a conjecture until it is finally proved and becomes
a theorem. It is rather unusual to call a statement in theoretical physics a conjecture, since most
of “established facts” in theoretical physics are conjectures from mathematicians’ point of view.
Mathematically speaking, Haldane’s conclusions for the Heisenberg chain (1.2.1) is still a conjec-
ture. (But nobody calls it the “Haldane conjecture” any more).
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sections 8.3.3 and 8.3.4 a detailed account of their index theory. Finally, in 2018
and 2019, by using sophisticated notions in operator algebraic approach to quantum
many-body systems, Ogata developed fully rigorous index theorems, which essen-
tially solves the problem of SPT phases in quantum spin chains [31, 32].

In this part, we also discuss two topics from quantum information science which
are closely related to the main theme of the part, namely, the Briegel-Raussendorf
state (cluster state) [6] and its generalizations (section 7.3.3) and Kitaev’s toric code
model (section 8.4) [23]. The latter is of considerable interest as a simple model
exhibiting topological order, which is distinct from (and probably more important
than) symmetry protected topological order.

In Part III of the book, we turn our attention to the origin of interactions be-
tween spins which we see, e.g., in the Hamiltonians (1.2.1) and (1.2.2). We therefore
need to take one step further down to the microscopic level, and study the problem
of interacting electrons. Such a study was first made back in 1928 by Heisenberg,
who argued, based on a simple perturbation theory for a two-electron system, that
the Coulomb interaction between electrons and quantum many-body dynamics of
fermions lead to ferromagnetic exchange interaction as in (1.2.2). (This is the rea-
son for calling the model the Heisenberg model.)

The Hubbard model was introduced in the 1960’s independently by Kanamori
[18], Gutzwiller [12], and Hubbard [17] in order to study the origin of ferromag-
netism in many-electron systems. It is a tight-binding model with the simple Hamil-
tonian

Ĥ = ∑
x,y

σ=↑,↓

tx,y ĉ†
x,σ ĉy,σ +U ∑

x
n̂x,↑n̂x,↓ , (1.2.6)

where the first term represents quantum mechanical hopping of electrons, and the
second term describes the on-site Coulomb interaction. We stress that the model is
not designed to be a faithful model of realistic systems. It should be regarded as an
idealized model that is designed to capture universal phenomena and mechanisms
taking place in interacting many-electron systems.

We do not assume that the reader is familiar with the Hubbard model. We shall
carefully explain in chapter 9.2 the description (also known as the “second quanti-
zation” formalism) of many-electron systems in terms of creation and annihilation
operators, the motivations behind the definition of the Hamiltonian (1.2.6), and the
basics about non-interacting fermion systems.

As we see in Chapter 10, the origin of antiferromagnetic interaction (1.2.1) is
easily understood, at least heuristically, from Anderson’s perturbative argument for
half-filled Hubbard models [4]. In 1989, Elliott Lieb proved an important and non-
trivial theorem for the Hubbard model at half-filling, which partially confirms the
above perturbative picture [25]. Lieb’s theorem on the Hubbard model is one of the
most important achievements in mathematical physics for quantum many-body sys-
tems. For certain classes of models, the theorem also establishes the emergence of
ferrimagnetism and superconductivity. We shall discuss in detail the statement, ap-
plications, and the proof of Lieb’s theorem. As we have already stressed, a detailed
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(and hopefully readable) account of the proof of the theorem is one of the main
contributions of the present book.

The long final chapter, Chapter 11, is devoted to the emergence of ferromag-
netism in the Hubbard model. The first rigorous example of ferromagnetism in the
Hubbard model was discovered by Nagaoka in 1966 [30]. Nagaoka’s ferromag-
netism takes place in a rather singular situation where the number of electrons is
one less than the number of lattice sites, and the on-site Coulomb interaction is
infinitely large. Then there appears a single “hole” in the configuration, and the mo-
tion of the hole generates ferromagnetic coupling of the whole electrons. Although
Nagaoka’s ferromagnetism is interesting and nontrivial from a theoretical point of
view, it is nowadays believed that the mechanism leading to the ferromagnetism
does not work in less singular situations with finite interaction and multiple holes.

Almost for a quarter of a century, Nagaoka’s ferromagnetism was the only rig-
orous example of ferromagnetism in the Hubbard model. The situation changed
drastically in the early 1990’s when first Mielke [29] and then Tasaki [34] proposed
essentially different rigorous examples. They considered special classes of tight-
binding models in which the corresponding single-electron spectra have a flat low-
est band. It was proved that the ground states of the model exhibit ferromagnetism
for any nonzero Coulomb interaction when the number of electrons is exactly the
same as the degeneracy of the flat band. These examples are now called the flat-band
ferromagnetism. The elegant construction Mielke’s flat-band models makes use of
the notion of line graphs.

It should be noted that all the above rigorous examples of ferromagnetism are
singular in some aspects. Nagaoka’s ferromagnetism requires infinitely large inter-
action and exactly one “hole”. Flat-band ferromagnetism takes place only when one
has a singular band structure with infinitely large density of states. Rigorous ex-
amples of ferromagnetism which are free from any such singularities were finally
discovered by Tasaki in 1995 [35]. The models were obtained by perturbing Tasaki’s
flat-band models to make the lowest band dispersive. Then the emergence of ferro-
magnetism in the ground states was proved for sufficiently large but finite interaction
when the width of the lowest band is sufficiently narrow. Tasaki also proved that the
model has spin-wave excitations whose dispersion relation precisely recovers the
form expected in an insulating ferromagnet. Thus, starting from a well-defined non-
singular model of strongly interacting itinerant electron system, it was established
that the low energy properties of the model coincide with what are expected in a
“healthy” ferromagnetic system. We believe that this is the most satisfactory answer
(for the moment) to the problem raised by Heisenberg, i.e., to explain the origin of
ferromagnetism in terms of many-body quantum mechanics.

Of course all these are very special examples of ferromagnetic insulators. The
problem of the origin of ferromagnetism is still widely open. We end the chapter by
discussing our own very preliminary attempts at constructing rigorous examples of
metallic ferromagnetism.
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