Efficient Heat Engines
are Powerless

a fundamental tradeoff relation in
thermodynamics proved in 2016

Hal Tasaki

prerequisites

part 2: some knowledge about statistical
mechanics and stochastic processes



about part 2

4 an application of techniques of non equilibrium
statistical mechanics to the fundamental problem in
thermodynawmics about power and efficiency of heat
engines

1 Here we shall
O treat general Markov processes

O prove a general tradeoff relation which shows that
nonzero heat current implies dissipation

O apply the relation to heat engines toshow that a
heat engine with non-zero power can never attain the
Carnot efficiency

Model Stirling engine. By Richard Wheeler#€phyris) 2007



Stochastic
Thermodynamics

microscopic model of
thermodynamic systems



Basic setting

) engine = a systewm of N classical particles
mmenmmennsy  [V] deterministic dynamics

R Dy ‘o‘ -----

Newton equation with arbitrary
) force and interactions

wd @&  conserves energy and phase
N> space volume (when )\ is fixed)

[A stochastic dynamics
Langevin type noise which describes the
effect of two (or more) heat baths

A parameter (a set of parameters) which controls the
external forces, the interactions, and the couplings to
the heat baths

) is varied (by an external agent) according to a fixed
protocol



Deterministic dynamics

engine = a system of N classical particles
state of the system X = (r1,...,rn;v1,...,vn) € ROV

[A deterministic dynamics with fixed )

Newton equation with arbitrary force and interactions
which conserves total energy

d L d e
miavi(t) = F7(X(t)) arz(t) b vz.(t)
et St e ]
E*(X) energy of X at parameter )
L i C BA X (1) = 0

dt




Stochastic dynamics

state of the system X = (ry,...,rn;v1,...,vn5) € ROV

P;(X) probability density to find the system in X at ¢
[ Kramers equation with fixed )\ and single bath

9, i L

&Pt (X) = Lget Pt (X) s I (X)
cgrrﬁsponds to : : :
the Newton ¥~/ _ S/, L9 pap
equation ; ;{ or; m; Jv; }
randommotion o 5 2lrdg o 1 O
from the bath i ; il {5’% fm dv; }

| _exp|—BEMNX)| equilibrium
%#glo R AT distribution at g



The whole equation

the parameter is varied according to a fixed protocol \(¢)
A(t) = A(t + 7) tor any ¢t with a fixed period 7
Kramers equation (continuous master equation)
P.(X) probability density to find the system in X at ¢

corresponds to A 5 R
the Newton +—— 7, :Z{_”i'ar- s FA0)
equation ;-V:l R
brings the system ol aanord F 8l
10 QQUilibrium a’fﬁgﬁ g ; e {a’Uz‘ Bem; Ov;* }

state of the system X = (rq,...,7rN;v1,...,0N)



Heat and work

energy expectation valve E(t) = / dX EAO (X)) P(X)

flow of work flow of heat

. A
%E(t) — / dX \(t) (dE diX))\/\(t) Py (X)|+ / dX ERUEx %Pt(X)

\
—{Ju(t) + Jr(t)}
heat currents from the system to the baths g




Main results




Entropy production rate

P:(X) probability density to find the system in X at ¢
Js(t) heat current tobathB = H, L at+¢

fotal entropy production rate
d

o(t) = | H (P |[+{Bu Ju (1) + m;JL({f)-

T

change in the Shannon entropy
of the system (microscopic)

Hio L / X P(X) log P(X)

entropy production rates
g % — BAQ in the baths (phenowmenological)



Main tradeoff inequality

Jp(t) heat current tobathB = H,L at ¢

total entropy production rate
d

o(t) = - H(Pt) + PuJu(t) + Ardu(t)
improved Shiraishi-Saito bound
Ju(t)| + |Ju(t)] < V@ )| for any

2
ZVBm?; {i v—l_ﬁBlm 8?) }

close to equilibrium

N
3408 e e 5%@3()\@)»"%) vil*), 21“\
e g /' heat conductivity

average with respect to P; J ~ kAR



Main tradeoff inequality and its use
improved Shiraishi-Saito bound

Ju(t)] + [JL(t)] < VOl
‘current” always induces dlsslpa’rlon (measured by o(t))

nonzero power

Y

nonzero current

v

nonzero dissipation

v

the maximuw efficiency cannot be attained



Main tradeoff inequality and its use
improved Shiraishi-Saito bound

Ju(t)| + (b)) < VO(t)a(t)

‘current” always induces dissipation” (measured by o (¢))
integrate over a period ¢ < |0, T]

/ dt{|Ju(t)| + |JL(t |}§/ dt+/O(t) o(t)
0 0
Schwarz inequality—, _ ( / dt@(t))l/Q ( /T dta(t))1/2

0 0
we can assume the penodlclfv Byt

[ dtot) =P = AP [ dt{ntatt) + i)
0 0
=0
| Shannon entropy disappears from the theory
g} = <> H(P;) + BuJu(t) + BrJL(t)




Main tradeoff inequality and its use

/ dt{|Ju(t)| + |Ju(t)|} < (/OT dt@(t))l/Q(/OT dtg(t))l/2

0

/OT di.o(1) = /OT dt{ BuJu(t) + BrJL(t) }

inequality between observable quantities Jy (¢), Ji,(¢)

1 T
O = —/ dt O(t)
T Jo



Power and etficiency

we get an inequality between Qi and Q1
(Qu + QL)° <70 (—BuQu + FLOQL)

W =Qu - QL 8
n=W/Qn * Qm :_f() dt Ju (t)

_ QL = [F TSR
i < O n(nc —n) = 3
QH)QL>O U

rigorous ana quantitative traaeoff relation
between power and efficiency




-+ Power and efficiency

1% work

7§@5L77(770—77) W =Qu— QL

B— ——— pPOWeEr W/r
efficiency

W/r—0as nTnc n=W/Qu

a heat engine with non-zero power ¢can never
attain the Carnot efficiency

[ applies to any heat engine that can be described by
classical mechanics (with or without time-reversal
symwetry) and Markov process

[A state of the engine can be arbitrarily far from
equilibrium




Power and etficiency

Qu YW, — =0©Bunlnc—n)

B — T
the key quantity 6= = / : dt O(t)
0

T

[ not a universal constant, but is always finite

[ proportional o the size of the system (the bound is
meaningful in thermodynamic limit)

Iz'aplproaches the heat conduetivity « in the limit of
equilibrium dynawics r r_ :
= /{Aﬁ 2 Z 7352; ! {8?)7, i BBlmz' 5’?%2}




Derivation
some essence



Proof of the improved Shiraishi-Saito
bound in the simplest setting

Markov jump process \//N\
finite discrete state space S > z, vy, . .. 73 o)

) parameter(s) of the wmodel JWNZ

E? energy of state x with )

R, transition rate for stochastic dynamics which satisfies
’ the detailed balance condition for smgle 5

Ry, 20(z#y) 2. Rz
R),e PPy = R}, e~PE: for any =,y

the parameter changes according to a fixed protocol \(¢)
ps(t) probability to find the system in z at ¢

master equation p.(¢) = ) _, Rﬁé”m( t)



Lower bound for-(¢)

entropy prgducfion rate Jit == B R
= { Za;pa: lngx }"‘6‘]

A(1)

5 N T Pt

Z Ry py(t) log /\?t) 2

Y Ryx Px (t> ________

i S A
San m ' 4 ;
S - ) o el

a:;éy ------ Xr pl‘(t)
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Upper bound for |j(¢)
T st oy ey
— Zx —EX OO (1) — Ry p.(1))

A A A A
i i Zx;&y{Ex S Fy (t)}{Raﬂgt)py (t) — Ry:g:t)pa: ()}

1 By A
= 3 BN — B0 Rpy 1) + Rp ()il e ]
vy \/ Riy 'py(t) + Rya ' pa(t)

IO < /SN L m O R;\é%m( 0
LS (BT - BV R e Gl B

J(t)] < VO(t)a(t) > 3 B0~ B p 0

At At
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Treatment of the full model

master equation (Kramers equation)
o,
5 P X) = Lo P (X) + D Ly P(X

0,
/ B
: ; written as a continvum
:)';Y:; cseazljf%sogifv?(;lfe d limit of a discrete model

produce entropy with detailed balance

(this reflects the reflection
symwmetry of the
—v«<—0O O——> v transitionrate)

s
<0 @ >v

N
AN fYB()\a ri) 0 | 1 0
L% = ; m; {81)2 T BBmZ- 8’02'2 }




Summary

M We have proved a tradeoff relation (improved
Shiraishi-Saito bound) which shows that a non-
vanishing heat current implies dissipation

Ju(t)| + |JL ()] < +/O(t)

M The bound, when applied to a hea’r engme, leads to a
tradeoff relation between power and efficiency.
which implies that a heat engine with non-zero

power can never attain the Carnot efficiency

W ne
s O 5L n(nc — n)

For further discussion, see
Shiraishi, Saito, and Tasaki 20186, Shiraishi and Saito 2019




