Symmetry-protected topological (SPT) phases and

topological indices in quantum spin chains

part 1: Haldane conjecture, topological phase transitions, SPT phases, and all that

Hal Tasaki

ground states of two-spin systems

classical spin (vector) $oldsymbol{S} = (S^{\mathrm{x}}, S^{\mathrm{y}}, S^{\mathrm{z}}) \in \mathbb{R}^3 \quad |S| = S$ ferromagnetic interaction antiferromagnet interaction

$$E=-S_1\cdot S_2$$
 \uparrow $E=S_1\cdot S_2$ \downarrow \uparrow infinitely many g.s. $E=S_1\cdot S_2$ infinitely ma

$$-S_1 \cdot S_2$$
 \uparrow $E = S_1 \cdot S_2$ \downarrow \uparrow infinitely many g.s.

quantum spin (operators) $\hat{m{S}} = (\hat{S}^{\mathbf{x}}, \hat{S}^{\mathbf{y}}, \hat{S}^{\mathbf{z}})$

$$[\hat{S}^{\mathrm{x}}, \hat{S}^{\mathrm{y}}] = i\hat{S}^{\mathrm{z}}, \cdots \quad \hat{S}^{2} = S(S+1) \quad S = \frac{1}{2} 1, \frac{3}{2}, \dots$$

$$\hat{H} = -\hat{m{S}}_1 \cdot \hat{m{S}}_2$$

$$\begin{array}{l} |\uparrow\rangle|\uparrow\rangle \\ |\downarrow\rangle|\downarrow\rangle \\ |\uparrow\rangle|\downarrow\rangle \\ |\uparrow\rangle|\downarrow\rangle + |\downarrow\rangle|\uparrow\rangle\}/\sqrt{2} \end{array}$$

infinitely many g.s.

ferromagnetic interaction antiferromagnet interaction

$$\hat{H}=\hat{m{S}}_1\cdot\hat{m{S}}_2 \ \{|\!\uparrow\rangle|\!\downarrow\rangle-|\!\downarrow\rangle|\!\uparrow\rangle\}/\sqrt{2} \ ext{spin singlet}$$

unique rotationally invariant ground state

ground states of two-spin systems

classical spin (vector) $oldsymbol{S} = (S^{\mathrm{x}}, S^{\mathrm{y}}, S^{\mathrm{z}}) \in \mathbb{R}^3 \quad |S| = S$ ferromagnetic interaction antiferromagnet interaction

$$E=-S_1\cdot S_2$$
 \uparrow $E=S_1\cdot S_2$ \downarrow \uparrow infinitely many g.s. $E=S_1\cdot S_2$ infinitely ma

infinitely many g.s. infinitely many g.s.

quantum spin (operators) $\hat{S} = (\hat{S}^{x}, \hat{S}^{y}, \hat{S}^{z})$

$$[\hat{S}^{x}, \hat{S}^{y}] = i\hat{S}^{z}, \cdots$$
 $\hat{S}^{z} = S(S+1)$ $= \frac{1}{2} 1, \frac{3}{2}, \dots$

 $[\hat{S}^{\mathbf{x}},\hat{S}^{\mathbf{y}}]=i\hat{S}^{\mathbf{z}},\cdots$ $\hat{S}^{2}=S(S+1)$ $=\frac{1}{2},1,\frac{3}{2},\ldots$ ferromagn we expect strong land interesting interaction $\hat{H}=-$ "quantum effects" in antiferromagnets!

$$|\uparrow\rangle|\uparrow\rangle$$
 spin triplet

 $\{|\uparrow\rangle|\downarrow\rangle+|\downarrow\rangle|\uparrow\rangle\}/\sqrt{2}$ infinitely many g.s. $\{|\uparrow\rangle|\downarrow\rangle - |\downarrow\rangle|\uparrow\rangle\}/\sqrt{2}$

spin singlet unique rotationally invariant ground state

Bethe ansatz Haldane conjecture and AKLT model

quantum antiferromagnetic Heisenberg chain

one of the most standard models of quantum manybody systems

what are the ground state and low energy excitations?

Néel state is NOT a ground state (quantum fluctuation!)

Results from the Bethe ansatz

Bethe 1931 and many others

$$\hat{H} = \sum_{j=1}^{L} \hat{\boldsymbol{S}}_j \cdot \hat{\boldsymbol{S}}_{j+1} \quad S = \frac{1}{2}$$

$$S=rac{1}{2}$$

- (i) ground state is unique (for finite or infinite L)
- (ii) no energy gap above the ground state
- (iii) g.s. correlation decays with power law

$$\langle \operatorname{GS}|\hat{\boldsymbol{S}}_{j}\cdot\hat{\boldsymbol{S}}_{k}|\operatorname{GS}\rangle \sim (-1)^{j-k}\frac{\sqrt{\log|j-k|}}{|j-k|}$$

the ground state is critical

Haldane's discovery

Haldane 1981, 1983, 1983

there is a qualitative difference in low energy properties of the AF Heisenberg chains with half-odd-integer spins $S=\frac{1}{2},\frac{3}{2},\cdots$ and integer spins $S=1,2,3,\ldots$

half-odd-integer spins (the same as S=1/2) (i) ground state is unique (for finite or infinite L) (ii) no energy gap above the ground state (iii) g.s. correlation decays with power law

Haldane's discovery

integer spins

- (i) ground state is unique (for finite or infinite L)
- (ii) nonzero energy gap above the ground state

(iii) g.s. correlation decays exponentially
$$\langle \mathrm{GS}|\hat{\pmb{S}}_j\cdot\hat{\pmb{S}}_k|\mathrm{GS}\rangle\sim (-1)^{j-k}\frac{e^{-|j-k|/\xi}}{|j-k|^{1/2}}$$

the energy gap = Haldane gap a unique gapped ground state without any order

a unique ground sate accompanied by a nonzero energy gap

Surprises (in early 80s) about Haldane's conclusions

- qualitative difference between models with half-oddinteger spins and integer spins
- ▶ it is "natural" that a system with continuous symmetry and unique g.s. is gapless (LSM theorem)
- ▶ the unique gapped g.s. of integer spin chains are predicted to be disordered like high-temperature states. can "quantum fluctuation" be that strong??

the referee report to Haldane's paper in 1981

"This is in manifest contradiction to fundamental principles of physics"

A rigorous example with S=1

antiferromagnetic Hamiltonian with an extra term

$$\hat{H}_{ ext{AKLT}} = \sum_{j=1}^{L} \{ \hat{m{S}}_j \cdot \hat{m{S}}_{j+1} + rac{1}{3} (\hat{m{S}}_j \cdot \hat{m{S}}_{j+1})^2 \}$$

Theorem (AKLT 1987)

(i) ground state is unique (for finite or infinite L) (ii) nonzero energy gap above the ground state (iii) g.s. correlation decays exponentially

$$\frac{\langle \text{VBS}|\hat{\boldsymbol{S}}_{j} \cdot \hat{\boldsymbol{S}}_{k}|\text{VBS}\rangle}{\langle \text{VBS}|\text{VBS}\rangle} = 4(-3)^{-|j-k|} \quad (j \neq k)$$

All the conclusions by Haldane for integer spin chains are verified (for an artificial model)

VBS (valence-bond solid) state

$$\hat{H}_{AKLT} = \sum_{j=1}^{L} \{ \hat{S}_{j} \cdot \hat{S}_{j+1} + \frac{1}{3} (\hat{S}_{j} \cdot \hat{S}_{j+1})^{2} \}$$

exact g.s. of AKLT model

starting point of the proof

$$|VBS\rangle =$$

• a spin with S = 1/2

$$ullet$$
 = $rac{1}{\sqrt{2}}\{|\uparrow
angle|\downarrow
angle-|\downarrow
angle|\uparrow
angle}$ spin singlet

antiferromagnetic correlation "quantum fluctuation"

$$|\sigma\rangle|\sigma'\rangle \rightarrow \frac{1}{2}\{|\sigma\rangle|\sigma'\rangle + |\sigma'\rangle|\sigma\rangle\}$$

$$\sigma, \sigma' = \uparrow, \downarrow$$

Matrix product representation of the VBS state

exact g.s. of AKLT model

Fannes, Nachtergaele, Werner 1989, 1992

coefficient standard basis state

$$\mathsf{M}^+ = \begin{pmatrix} 0 & 0 \\ -\frac{1}{\sqrt{2}} & 0 \end{pmatrix} \qquad \mathsf{M}^0 = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{pmatrix} \qquad \mathsf{M}^- = \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} \\ 0 & 0 \end{pmatrix}$$

special case of a general class of states matrix product states (MPS)

$$|\Phi\rangle = \sum_{\sigma_1, \dots, \sigma_L = -S}^{S} \text{Tr}[\mathsf{M}^{\sigma_1} \dots \mathsf{M}^{\sigma_L}] | \sigma_1, \dots, \sigma_L \rangle$$

any unique gapped ground state of a spin chain is approximated accurately by MPS

Exotic properties of the AKLT model

$$\hat{H}_{AKLT} = \sum_{j=1}^{L} \{ \hat{S}_{j} \cdot \hat{S}_{j+1} + \frac{1}{3} (\hat{S}_{j} \cdot \hat{S}_{j+1})^{2} \}$$

hidden antiferromagnetic order in the VBS state

$$\cdots +0-+0-+0-0+0-00+-+0-+0-\cdots$$

alternating sequence of + and -

effective S = 1/2 spins at the edge of an open chain

four-fold (near) degeneracy in an open chain

universal properties of the "Haldane phase"

observed experimentally!

topological phase transition and SPT phases

Two S = 1 chains with a unique gapped ground state

AKLT model

$$\hat{H}_{\text{AKLT}} = \sum_{j} \{ \hat{\boldsymbol{S}}_{j} \cdot \hat{\boldsymbol{S}}_{j+1} + \frac{1}{3} (\hat{\boldsymbol{S}}_{j} \cdot \hat{\boldsymbol{S}}_{j+1})^{2} \}$$

$$|\text{VBS}\rangle \propto \underbrace{-\hat{\boldsymbol{S}}_{j} + 1 + \frac{1}{3} (\hat{\boldsymbol{S}}_{j} \cdot \hat{\boldsymbol{S}}_{j+1})^{2} \}}$$

trivial model

$$\hat{H}_{\text{trivial}} = \sum_{j} (\hat{S}_{j}^{z})^{2} \qquad \hat{S}_{j}^{z} |0\rangle_{j} = 0 \qquad \hat{S}_{j}^{z} |\pm\rangle_{j} = \pm |\pm\rangle_{j}$$
$$|\text{GS}_{\text{trivial}}\rangle = |\cdots 000000000 \cdots\rangle$$

both models have a unique gapped ground state

are the two models "connected" smoothly?

property of a model which interpolates the two models

Interpolating model

$$\hat{H}_{s} = s\hat{H}_{\text{AKLT}} + (1-s)\hat{H}_{\text{trivial}} \quad 0 \le s \le 1 \quad S = 1$$

$$\hat{H}_{\text{AKLT}} = \sum_{j} \{\hat{S}_{j} \cdot \hat{S}_{j+1} + \frac{1}{3}(\hat{S}_{j} \cdot \hat{S}_{j+1})^{2}\}$$

$$\hat{H}_{\text{trivial}} = \sum_{j} (\hat{S}_{j}^{z})^{2}$$

a unique gapped ground state at s=0,1

trivial gap

Haldane gap

numerical results by Hosho Katsura

there is a phase transition at intermediate s!!

Interpolating model

$$\hat{H}_{s} = s\hat{H}_{\text{AKLT}} + (1-s)\hat{H}_{\text{trivial}} \quad 0 \le s \le 1 \quad S = 1$$

$$\hat{H}_{\text{AKLT}} = \sum_{j} \{\hat{S}_{j} \cdot \hat{S}_{j+1} + \frac{1}{3}(\hat{S}_{j} \cdot \hat{S}_{j+1})^{2}\}$$

$$\hat{H}_{\text{trivial}} = \sum_{j} (\hat{S}_{j}^{z})^{2}$$

there is a phase transition at intermediate s!!

but, for s = 0 and 1, the ground state is unique, and breaks no symmetry

gapless (critical) point

unique gapped g.s. unique gapped g.s.

S

a "topological" phase transition (i.e., a phase transition which cannot be characterized by symmetry breaking)

proofs of the existence of a phase transition

Tasaki 2018

Ogata 2018

Smooth connection of two models

DEFINITION: \hat{H}_0 and \hat{H}_1 are said to be smoothly connected if there is a family \hat{H}_s (with $0 \le s \le 1$), and, the Hamiltonian \hat{H}_s has a unique gapped ground state for each s and the ground state depends smoothly on s

symmetry and phase transition

Gu, Wen 2009, Chen, Gu, Wen 2011

two Hamiltonians $\hat{H}_{
m AKLT}$ and $\hat{H}_{
m trivial}$

can be smoothly connected if any short ranged Hamiltonian is allowed

proof: Bachmann, Nachtergaele 2014, Ogata 2017

can never be smoothly connected if only Hamiltonians with certain symmetry are allowed

symmetry protected topological (SPT) phase

there must be a ground state phase transition!

Symmetry protected topological (SPT) phase

Gu, Wen 2009, Pollmann, Turner, Berg, Oshikawa 2010, 2012

Haldane phase (which includes AKLT model) of an S=1 chain is in a nontrivial SPT phase protected either by

S1 $\mathbb{Z}_2 \times \mathbb{Z}_2$ symmetry (π -rotations about the three axes)

S2 time-reversal symmetry

S3 bond-centered reflection symmetry

SPT phases are characterized by "topological" indices, rather than order parameters