Symmetry-protected topological (SPT) phases topological indices in quantum spin chains

appendix: Definition of Ogata index (some operator algebra)

Hal Tasaki

online lecture @ YouTube / August 2021

General quantum spin chain

 \mathfrak{h}_j Hilbert space at site $j\in\mathbb{Z}$

$$\dim(\mathfrak{h}_j) \leq d_0$$

 C^* algebra $\mathfrak{A} = \overline{\{\text{all local operators}\}}$

G symmetry group (finite group)

 $u_g^{(j)}$ unitary on \mathfrak{h}_j projective representation with index $\mathrm{ind}_j \in \mathrm{H}^2(G,\mathrm{U}(1))$

*-automorphism on 21

$$\Xi_g(A) = \left(\bigotimes_{j=-L}^L u_g^{(j)}\right) A \left(\bigotimes_{j=-L}^L u_g^{(j)}\right)^*$$

for $g \in G$ and a local operator A

$$\Xi_g \circ \Xi_h = \Xi_{gh}$$

G-invariant Hamiltonian and a unique gapped g.s. formal expression

G-invariant short ranged Hamiltonian $H = \sum_{j \in \mathbb{Z}} h_j$ $h_j = h_j^*$ acts only on $\bigotimes_{k;|k-j| \leq r_0} \mathfrak{h}_k$ $\Xi_q(h_j) = h_j$ for any $j \in \mathbb{Z}$ and $g \in G$

basic assumption: the ground state ω of H is unique and accompanied by a nonzero energy gap

$$\omega(A) = \lim_{L \uparrow \infty} \langle \Phi_{GS}^{(L)}, A \Phi_{GS}^{(L)} \rangle$$

Def: a state is a linear function $\omega:\mathfrak{A}\to\mathbb{C}$ such that $\omega(I) = 1$ and $\omega(A^*A) \ge 0$ for any $A \in \mathfrak{A}$ Def: ω is a g.s. if $\omega(A^*[H,A]) \geq 0$ for any local operator A Def: a unique g.s. ω is accompanied by a nonzero gap if there is $\gamma > 0$ and $\omega(A^*[H,A]) \ge \gamma \omega(A^*A)$ for any A s.t. $\omega(A) = 0$

GNS Hilbert space for half infinite chain

noting the G-invariance $\omega_j(\Xi_g(A))=\omega_j(A)$, we can define unitary U_g on \mathcal{H}_j by $U_g\,\pi_j(A)\,\Omega_j=\pi_j(\Xi_g(A))\,\Omega_j$ for $A\in\mathfrak{A}_j$

but ... $U_gU_h=U_{gh}$ genuine rep. = trivial proj. rep. this is not yet what we want!

von Neumann algebra for half infinite chain

$$\pi_j(\mathfrak{A}_j) \subset \pi_j(\mathfrak{A}_j)'' \subset B(\mathcal{H}_j)$$

the set of all bounded operators on \mathcal{H}_j

when ω is a unique gapped ground state $\pi_j(\mathfrak{A}_j)''$ is a type-I factor, which is the most well-behaved von Neumann algebra $_{\text{Matsui}}$ $_{\text{2013}}$ then $\pi_j(\mathfrak{A}_j)''\cong B(\tilde{\mathcal{H}}_j)$ for some Hilbert space $\tilde{\mathcal{H}}_j$

proj. rep. on half infinite chain Matsui 2001

 $\pi_j(\mathfrak{A}_j)''\cong B(ilde{\mathcal{H}}_j)$ for some Hilbert space $ilde{\mathcal{H}}_j$

one can construct a projective rep. $ilde U_g$ of G on $ilde {\cal H}_j$ the corresponding index ${
m Ind}_j\in {
m H}^2(G,{
m U}(1))$

rough idea of the construction

 $\pi_j(\mathfrak{A}_j)$ is invariant under the action of $U_g(\cdot)U_g^*$

define *-automorphism Γ_g on $B(ilde{\mathcal{H}}_j)$ by

$$\Gamma_g(X) = \varphi(U_g \varphi^{-1}(X) U_g^*) \qquad \pi_j(\mathfrak{A}_j)'' \xrightarrow{\varphi} B(\tilde{\mathcal{H}}_j)$$

it holds that $\Gamma_g \Gamma_h = \Gamma_{gh}$

Wigner's theorem guarantees that there is a unitary \tilde{U}_g on $\tilde{\mathcal{H}}_j$ such that $\Gamma_g(X)=\tilde{U}_g\,X\,\tilde{U}_g^*$