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a typical process of thermalization

equilibrium state with nonequilibrium
temperature T and pressure p state

\‘.thermallzanon

| , . W equilibrium
i+ Wweprove that this process g state

takes place in a dilute ideal
gas of fermions on a chain
evolving only by quantum-
mechanical time-evolution
(we treat the case 7 = o)
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what is the origin of thermalization?
_ approach to therwal equilibrivm

foundation of equilibrium statistical mechanics

question: does an isolated macroscopic quantum system
thermalize only by means of quantum mechanical time-
evolution? [2(t)) = e *t®(0))

YES! supported by nhumerous theoretical arguments,
nuwerical simulations, and experiments in cold atoms

BUT, there were no concrete (and “realistic”) examples in
which the presence of thermalization was established
without relying on any unproven assumptions

we prove the presence of thermalization (in a restricted sense)

for low-density non-interacting fermions on a chain
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model and initial state

N non-interacting fermions on the chain {1.....L} )‘1
«* L large 2 prime, N Iarqe posmve m’reger densu’rv ,0 = N/L |

Hamulfoman =5 fetele b eitifel et

6@9 6—29

Lemma: all the energy eigenvalues of A are non
-degenerate for most 0

initial state

pick a normalized state | ©(0)) at random (with uniform
probability) from the Hilbert space where all particles

are in the left half-chain {1...., )
 equilibrivm at 7' = co confined in the halt-chain




time-evolution and thermalization
time-evolved state |©(¢)) = e—#t|®(0))

N,... the number of particles
in the left half-chain {1..... L; Ly

Nleft

N

1©(0)) = |9(0)) for the choice of | D(0))

Theorem: the following is true with prob. > 1 — ¢~V
there exist sutficiently large 7 > 0 and a set G € [0,T]
with |G|/T > 1 — ¢~ PN

for any r € G, the measurement result of N, , satisfies

A’left

1

N

2

< ey(p) With prob. > 1 — e=(?HN
quantum wmechanical

with ¢)(p) = /3p/2 probability



time-evolution and thermalization
time-evolved state |©(¢)) = e—#t|®(0))
N, the number of particles

in the left half-chain {1...., =)

Tt 1(0)) = [(0)

Theorem: it almost certainly happens that, for sufficiently

large and typical time 7, the measurement result of N, ,

. T
almost certainly satisfies jlvft ~

] N | | 8
since — — 1 at r = 0, we seelthermalization!!
N but the precision is c,(p) = \/3p/2

the result is meaningful only for low enough density p
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does thermalization take place only in the

special free fermion chain with a prime L ?

of course, the physics should not change when L is not a
prime, but this is (so far) the only example where we can
prove thermalization without relying on any unproved
assumptions

we indeed prove a general thermalization theorem under
two assumptions

Assumption 1: energy eigenvalues are non-degenerate

Assumption 2: any eneray eigenstate | ) satisfies
(U] Ploge| V) <27V

assumption 1 is very plausible in a generic quantum
many-bhody systems

we have examples of interacting model where
assumption 2 is verified assuming assumption 1



why isolated systems? there can't be a

of interest |

weak in’rec’rion with the surrounding
environment (bigger system)

quantuwm system
of interest

perfectly isolated from the outside world

ouY SQ““'\V\Q




why isolated systems? there can't be a
completely isolated system!

chvaual

§2. Statistical independence Landau and Lifshitz, “Statistical Mechanics” p.6

The subsystems discussed in §1 are not themselves closed systems; on the
contrary, they are subject to the continuous interaction of the remaining
parts of the system. But since these parts, which are small in comparison with
the whole of the large system, are themselves macroscopic bodies also, we can
still suppose that over not too long intervals of time they behave approxi-
mately as closed systems. For the particles which mainly take part in the
interaction of a subsystem with the surrounding parts are those near the
surface of the subsystem; the relative number of such particles, compared
with the total number of particles in the subsystem, decreases rapidly when
the size of the subsystem increases, and when the latter is sufficiently large
the energy of its interaction with the surrounding parts will be small in com-
parison with its internal energy. Thus we may say that the subsystems are
quasi-closed. It should be emphasised once more that this property holds
only over not too long intervals of time. Over a sufficiently long interval
of time, the effect of interaction of subsystems, however weak, will ultimately
appear. Moreover, it is just this relatively weak interaction which leads
finally to the establishment of statistical equilibrium.




why isolated systems? there can't be a
completely isolated system!

realistic setting

quan’rum svsfem
of m’reresf R

surroundmg envuronmem (blqger system)

fashionable answer
modern experiments in cold atoms!

unfashionable answer
we wish to learn what isolated systewms can do

(e.q., whether they can thermalize)

after that, we may study the effect played by the
environment
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basic concepts and strategies

two main OOI’IOOPTS SR

ETH (energy cigenstate thermalization hypothesis) W
| all energy eigenstates |¥;) with E; ~ E are similar

Nl S e N e S E Rl e R VO"Neumann12us991Sredn|ck|1994 J
effective dimension D.; — (Z| |0 >>\ G

| D the effective number of energy eigenstates that |
constitute the inifial state \ cI>(O)>

essennal eondmons that guarantee the presence of
thermalization
von Neumann 1929

l) a STI’O"Q Vel’siO“ Of ETH Goldstein, Lebowitz, Mastrodonato, Tumulka, and Zanghi 2010
2) aversion of ETH and Iarqe eff Ii‘:zﬁ:. Popescu, Shrt, Winter 2009




bas'  believed o be valid in most éufﬁcuéuﬂ? ales
two m: complex quantum manv—body systems

ETH (energy cigenstate thermalization hypothesis)

| all energy eigenstates | V) with E; ~ E are similar }&
\ B e von Neumann1929eusc991 Srednicki 1994 )

efm| J|q> )>‘ )—T T

D the effective number of energy eigenstates that|
onstitute the initial state | ®(0))

~ Tasaki 1998, Relmann 12008, Linden, Popescu, Short Wmter 2009 J]

N — e

eccent believed to be very large for realistic nonequilibrium states
therms: in sufficiently complex quantum many-body systems
von Neumann 192

1) a strong version of ETH Goidstein, Lebowi
2) a version of ETH and large eff i

we use this strategy in |
’rhe present work




why does large D_.. lead to thermalization
initial state |2(0)) = 3", a;|¥;)
time-evolved state |2(t)) = e=*7*|®(0)) = 3. a; e~ 53t | T;)

expectation value of an observable
(@O ®(1)) = 3,  ofog e E—ERH W, O]y, )

long-time average J

r

: T 2 2
limryo 7 Jy dH{@()|O|2(2)) = 32, oy [ (WO ;)
if Do = (3, |j|9)™! ~ Dot them |a;” ~ Dt

and limzqo 7 T fo dt(® )|O‘(I)( )) ~ Doy Zg<\113|@‘\113>
= <@>%ailgélical

(there also is a version for finite 7)



structure of the proof
I ¢,  Hilbert space in which all particles are
in the half-chain (1,..., ==}
P : projection onto 7, .
general theory

we prove that a low-density lattice gas exhibits
thermalization under the two (plausible) assumptions

Assumption 1 energy eigenvalues are non-degenerate

Assumption 2: any energy eigenstate | ¥;) satisfies
(U] Pegs|¥5) < 27N

analysis of the free fermion chain

Assumption 2 can be proved from the exact solution
Assumption 1 can be proved by using results from the
number theory



general theory

proof that D_.. is large

Assumption Z: any energy eigenstate | ¥;) satisfies
(i 1B e <d 9

D,.;, : dimension of 7,
| ©(0)) : a random normalized state from 7,

 avrae J stanarsorm o s anton sate

D(0)| U N4 = (D(0)|Progs | W) |4 = P [0
(P(0)|P;)|* = [(P(0)]|Pets |V 5)] Dleft(Dleft+1)|| lofs | 5) |

2 P
Dleft(Dleft =E 1) iR ! TI'[Pleft] == Dleft

D = X, RO, )T _Dlei(};mm B )

D e
- < D1 o(2/3)pN
Dleft T foi tOt ?

close to D_! if p is small




analysis of the free fermion chain
proof of the absence of degeneracy

(VTN OTIEUE st be studied in the nuwber theory!
energy eigenvalye

/DEsll T . 7 L—1 '
/gl ijo e COS(QT] 1 0) = R[e ijo e |
occupation numbers n; =0,1, >0 n;=N

number-theoretic facts
assume L is an odd prime, N < (L—-1)/4,m,,....m; | €EZ

Lemma: if m; # O for sowe j, then 3" m;¢7 # 0
=i
g T B it 1
Lemma: we have| .~ m; 07| > (X7 [my))
=i

e ———————————ET



analysis of the free fermion chain
proof of the ahsence of

Hawmiltonian

energy eigenva
F.=S""1ln, cos(2Zj + 0) = Rle

Proof: The lemma is proved by using standard facts about the field norm and algebraic
integers. See, e.g., [49]. Let o — Zﬁ:—ll my, ¢ € Z[¢] C Q[¢] and

L—1
() — Z i2mjp/ L
OJ (Q) - mM € )
p=1

Y
n be its conjugate, where J=1,...,L — 1. Note that o1(a) = a, 0;(a) = {or—j(a)}*, and

loj(c)| < M. Let N - Q[¢] — Q denote the field norm of Q[¢]. By definition, we have k& mL—l E Z

(L—-1)/2

L—-1
L Ne)=]lei@) = Tl 319 £ ()

Since Lemma 3.3 guarantees oj(a) # 0 for all j, we see that N (@) > 0. Note that « is an
algebraic integer, and hence so are jts conjugates o;(a) and the norm N (@). It is known that
an algebraic integer that is rational must be an integer. Since N (@) € Q, we see N () € Z
and hence N(a) > 1. This bound, with (3.19), implies

L laf* > (

[L—3)12
(L-1)/2

2\ ! 1
g l%(a)l> = s | (3.20) |

MDA
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summary

we focused on the problem of thermalization® =

(approach to therwmal equilibriuwm) in isolated =
macroscopic quantum systems e A

Mwithout relying on any unproved assumption ‘ #
we proved that a free fermion chain exhibits
thermalization (in some weak sense)

[ the key observations were that a random
nonequilibrium initial state has a large D_;; and that
the ahsence of degeneracy can be proved by using some
number-theoretic results

it is desirable to have examples of non-integrable
systems in which our (plausible) assumptions for the
generdl theory of thermalization can be justified

g >,



