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topological index
in the SSH model



Su-Schrieffer-Heeger (SSH) model

Su, Schrieffer, Heeger 1979
non-interacting model at half-filling with Hamul’roman

HSSSH Z{ (li=1s) CEJCQJ+1+hC) (ng 1CQJ+hC)}
jEL s € [0, 1] model parameter

(24,25 + 1} forms a unit cell
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Zak phase as a topological index

unhique gapped g.s. cn’rwgl point umquegappedggs
0 trivial i/2  wnonfrivial 1

Zak phase (Berry phase in the Brillovin zone) 2o 1989
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Zak phase and the expectation valve of U,
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models
and main results




general model

interacting possibly disordered model of spinless fermions
at half-filling with Hamiltonian

i Zt3k06k+ ngk nk—%)

7,kEZ 1,kEZ
(J#k) (J#k)

e 1 2 3

. To,t(),?]() 00“8‘[’3"1’3
hoppl"g ik =tk € R
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interaction vjr =vr; €R
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an important corollary
H = thkcck+ ngk nk—%)
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A5°" and £7° belong to different phases within this
class of models

Uhique gapped g.8. / unique gapped g.S.

>
0 1/2 1

A, any path of Hawmiltonians (with s € [0,1]) in this class
such that A, = A5SH and A, = ASSH

o, must go through a phase transition point with
either non-unique g.s., gapless g.s., or discontinvity



strategy of the proof

2 the model has no translation invariance
no band structure!

& the model has interactions
the ground state is not a Slater determinant,
but an intractable many-body state!!

2 we shall study phase transitions rigorously
we must treat infinite systems!!!

we define a Z, valued index in terms of the expectation
value of the local twist operator in a unique gapped
ground state on the infinite chain

Tasaki 2018

Uhique gapped g.s. unique gapped g.s.
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symmetry of the models
=Y tinclon+ 5 3 vanliy — 5w — 3

eparticle number conservation U(1) symmetry

zinvariant under particle-hole transformation
+ gauge transformation on one of the sublattices

linear *-automorphism T (&) = (1) &
() =1-#; T(H)=H =t
[(AB) = T(A)I'(B)

ground state w on the infinite chain

L . 5
©:3) the ground state on a finite chain —- Lig
infinite volume limit w(4) = lim (64| 4263)
unique g.8. is T-invariant  w(I'(A)) = w(A)




general twist operator ..

Po(x) = S
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2 0(x) wraps around S' once as = : xy — x;
local twist operator Affleck, Lieb 1986
Up = exp|i > 0(2) (o + g1 — 1)

J
U, is local because expli 27 (fio; + figjy1 — 1)) = 1
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w(['(A)) = w(A) w(Uy) € R reality is essential



main theorem and the index

TREOREM: letw be a unique gapped ground state with
energy gap AE > 0. for any 9-function with ¢ < AE/t,,
w(Uy)is nonzero, and its sign is independent of ¢

—-"L v
i CUEUQ! =)
we define Ind,, € {0,1} = Z5 by Ind, = M

T 0

remark: for the two extreme ground state of the SSH wmodel,
we recover the Zak phase as Ind.,, = 0 and Ind,,, = 1

remark: it is believed that z, is the correct classification



invariance of the index

tamily of Hamiltonians 2, with s < [0, 1)(in our elass)

> H, has a I-invariant unique gapped 9.8. ., with
energy gap > AE, > 0

pws(A) is continvous in s for any local operator A

TREOREM: letw be a unique gapped ground state with
energy 9ap AE > 0. for any o-funetion with *¢ < AE/1,
w(Uy) s nonzero, and its sign is independent of ¢

—
MROLLARY the index mmd,, is independent of s € [0, 1]

-
p'?o”o*. X 20 -function with+2¢ < AE, 1t

the theorem implies w,(Us) # 0 tor any s € [0, 1]
ws(Uyg) cannot change the sign becavse of continvity

if Ind,,, # Ind,, there must be a phase transition!




an important corollary
H = thkcck+ ngk nk—%)
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A5°" and £7° belong to different phases within this
class of models
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such that A, = A5SH and A, = ASSH

o, must go through a phase transition point with
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proof of the main
theorem

a finite chain




proof for a finite chain (periodic b.c.)

THEOREM: let . be a unique gapped ground state with
energy gap A& > 0. for any o-funetion with *¢ < AE/1,,

w(Uy) is nonzero, and its sign is independent of ¢
w-'__'L -
B a Unique ground state |Pcs) witha gap AE > 0

Btake a o-function with+°¢ < AE/t, wish = {Qaai [Pdi

& standard Bloch, Lieh-Schultz-Mattis estimate
<@Gs|UTﬁU9‘(I)Gs> — Fae < to’)/Qg A )

B ifw(Us) = (®as|Us|Pas) =0, Up|®as) I8 an excited state
with excitation energy < AE. $0We see w(Up) # 0

B since w(Us) € R varies continvously when we modify
0 -function continvously, the sign cannot change



4 and |<I>Gs> are mvanan’r under

THEOR ith
i ) CT {
energy| vniform U(1) rotation ¢ X aE/m,
w(Up)i§ non-uniform rotation Us = (const)e’ 23 |

& a UNi .7 should change the expectation value of A7
\ ohly by ~ onst(ef) <t
>take a O-TORCTONWITH 7 < KE T

»standard Bloch, Lieb-Schultz-Mattis estimate
<(I)G3|Ug]:]ﬁg‘(1)gs> — Fae < t072€ A )

B ifw(Us) = (Pas|Us|Pas) = 0, Ug|Pgs) is an excited state
with excitation energy < AE. $0We see w(Up) # 0

B since w(Us) € R varies continvously when we modify
0 -function continvously, the sign cannot change



other theorems




duality of indices

w Unique gapped ground state

® ® ® ® ® ® ® ® ® ®
0 1 2 3

the twist operator Uy = exp [z Y " 0(25) (frgj + Rrajyr — 1)}
defines the index Ind, €z, '’

0 1 % 3
the twist operator U, = exp [z Z 0(27) (frgj—1 + oy — 1)}

defines another index md’, € z, ’
THEOREM: Ind,, + Ind’, = 1

Lany unique gapped g.s. is ’ropologlcallv nontrivial en‘her |
\withrespeetfo Ind,OF Ind;, ]




edge mode /- > uica+5 Y vty - Hin-

7,kEZ j,kEZ

further assume translation invariance as
Vjtryk+r = Yk tivr karm =tik (7r1even constant)
Hawiltonian on the half-infinite chain {0, 1,...}

> e 1 K A
H, = Z Ljk C}Ck 5 Z Ui k(fy — %)(”k B %)

J,k>0 5,k>0

TREOREM: suppose that the g.s. w of 1 is unique (in

the global sense), gapped, and satisfies Ind., = 1. Then any
I-invariant g.8. w; of I, is accompanied by a particle-
number-conserving gapless excitation near the edge

for any: > o thereis a local unitary 7. st. w. (U.)
aWGd.aL%(lﬂj{E[,lﬁJ) =

==




summary

A rigorous but very elementary index theory that
applies to a class of interacting one-dimensional
topological insulators, including the SSH wmodel

M our Z, index is defined from the sign of the
expectation value of the twist operator

[ the index is invariant under continvous modification
of unique gapped ground states (with symwmetry)

M a ground state with nontrivial index has a gapless
edge excitation when defined on the half-infinite chain




