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introduction

(symmetry protected) topological phases
in the Su-Schrieffer-Heeger (SSH) model




Su-Schrieffer-Heeger (SSH) model

Su, Schrieffer, Heeger 1979

one-dimensional system of spinless fermions
creation operator ¢

annihilation opera’ror ¢
number operator 7; = ¢l¢;

{¢,6,} =din G keZ

non-interacting model at half-filling with Hamiltonian
HSSH — Z{ 1 —s) cgjcgﬁl + h.c.) + 3(023 1625 +hee)}

j€L s € [0,1) model parameter
S 1 —s S 1 —s S 1 —s S 1l —s S
® ® ® ® ® ® @ ®
0 1 2 3

24,25 + 1} forms a unit cell



fwo extreme cases the state Witk
inre Z(égjé%-l-l +he) [Pgsp) = (H 2




single-particle Schridinger equation

chain with 2L sites, periodic b.c.

2L 2L
i ; . 2Ll
€ Z SOjC;|(I)vac> i HSSH Z Spjc; |Dyac)
j=1 j=1
: = s it
ASsH 2321 (1— S)(ngCQj_H + h.c.) + S(cgj_lcgj +h.c)}

in terms of the coefficients ¢, c C
{69023' == Ifsh s pte el i U E o s
€¢2j+1:(1—8)§02j‘|—8902j_|_2 jzl,,L

assuming the Bloch wave function
ik

¢2j:ﬁ€ Uo
902j—|—1:%6ikjul ble K =2ty Il 1 L—1}

the Schradinger equation reduces to the eigenvalue problem

€ i fhl 0 ar(k) U
! alk) 0 wl With a(k) =1 —s) + se™



single-particle energy bands

- ot ! O (k) U /CE/C:{Z%HML: ..... L—1}
Uy o Uy ol(k) =T —s)Fse”

energy eigenvalues
er(k) = £la(k)| = £4/52 + (1 — 5)2 +25(1 — s) cosk

ground state at half-filling

s=0,1 s =1/4,3/4 s
e+ (k) : e+ () \/} e+ () /

the wmodel has a unique gapped g.s. except ats = 1/2
unique ground state accompanied by a

nonzero energy gap



fopological index 1: winding numbeyr

unique gapped g.s. cri’ricgl point ynique qappfdsg.s.
o trivial /2  wnontrivial 1

this phase fransition is NOT characterized by an order
parameter becavse no symmetry is broken

—— topological index
hint: Schrédinger equation (Uo) ! ( 0 a*(k)) (Uo)

0 ar(k) (i D
( ) = Ra(k) ( ) + Sa(k) ( )
ak) 0 g i 0

the frajectory of (Ra(k), Sa(k)) = ((1 — s) + scosk, ssin k)
aAS L :0 — 27




fopological index 1: winding numbeyr

unique gapped g.s. cri’ricgl point ynique gapped g.s.

0 trivial 1/2 nontrivial 1 °
the trajectory of (Ra(k), Sa(k)) = ((1 — s) + scosk, ssin k)
aS k : 0 — 27

Sa(k) g===Ll
Se==2() s=1/4 s=1/2 s=23/4

x8 ) R /‘\ /\
s .

the winding number ) el D
around the origin = w=

1 dsia (5 1]

2T
e %/ dk0'(k) with a(k) = |a(k)| ™
O but this definition is rather ad hoc ..



topological index 2: Zak phase
w= L [ dk0' (k) With a(k) = [a(k)| ™
single-particle enerqv eigenstate corresponding to e+ (k)

CstEns il 1kj :|:k :
{% =i

Zak phase (Berry phase in the Brillovin zone) 2o 1989

. 0 selo,l
y;:—/O dk<u(k),${u(k)>{ =103)

d 1 se (1]

unlike w, the Zak phase v is defined only wod 2



Zak phase and twist operator

expression of the Zak phase v in terms of a many-body
expectation valve 11m<<I>GS|UtW1St‘q>GS> _ i

many-body ground state (at half-filling)

e+ (k)
i \/
9as) = ([T k) 1#we)
kE/C 7
1kg O @ »
\/— Z {UO 62] L ul ( ) CQj—I—l} O O

R

ereation operator of the single-particle energy
eigenstate with «_ (%)

the twist (or ’rhe flux-insertion) operator

L
nQJ = oy — 1)] ( 1)L+1 eXp [Z Z
j=1 j=1

Bloch (Bohm 1949), Lieb,Schultz, Mattis 1961

QWj(
5

M

Utw st — €XP [Z Na; + fl2j+1)]



Zak phase and twist operator
many-body ground state (at half—ﬁllmg)

Dig) = (H ak) | D) a’k \/— Z Zk]{u() 023 + uy (K )023+1}

ke

L

the twist (or fhe flux-insertion) operator
279

Uswist = €XP {z Z (=i 1)} (—1)X exp {z Z L] (1295 + n2]_|_1)}

g=1 =1k
Bloch (Bohm 1949), Lieb,Schultz, Mattis 1961
action on the ground state

thwist‘q)GS> = (_1 L_H (H [ST) ‘(I)vac
kek At

Bl Sl LMy Ch: + ¢
b} fz {ug (k) & + uy (k) &4}

one finds from an explicit compu’rahon :

{a, B0} = Spwsanur (k) u= (K)) ~ bx i as (1 — Ak(u (k). %fuf(k»)



Zak phase and twist operator
(®as|uwinl ®as) = (1) (@asl ([T o) (TT ) 1905 = [T aw bfe}

kek kel kek

d E 21 o .
~ ]};I[C(l — Ak {u (k), %u_(k») ~ exp _—/0 dk (u™ (k), %’u_(k»
e e e 0 s€l0,2)

where v== [ dk{u (k),——u(k)) =
77/() < dk > {1 i (% 1

Zak phase and the expectation value of U,

| 1 sel0,3)
grglo<q)GS|Utw1st|q)GS> e =
—1 se (5,1]
T — ﬁ
27

Utw BUNT exp[ Z T, (n2] i n2]—|—1 Sk 1)}

uhique gapped g.s. "”’f"’g' point umqueqappedggs
0 trivial 1/2  nomntrivial 1




remark: the role of symmetry
model without sublattice symwetry

TRM __ 77SSH A A
Hs,u o Hs T U E :(an it an—l-l)

g U
552 and A°5Y are | I
in the same phase Unique gapped g.s.

symwmetry protected ’(opologlcal (SPT) phases

27

Zak phases v, = : / dk (u™(k), ddk *(k)) arein general
not quantized, bu’r sa’nsfy vy +v_ =0 (mod2)

if the two bands are symmetric v+ = v—(as in the SSH
model) the it is quantized »_ < {0,1}



models
and main results




general model

interacting possibly disordered model of spinless fermions
at half-filling with Hamiltonian

= Zt3k06k+ ngk nk—%)

7,kEZ 1,kEZ
(J7#k) (J#k)

e 1 2 3

hoppi"g S cR o, t()? (%6 00“8‘[’3"1’3
L e

tix=0if j —k isevenor |5 — k| > ro
> [txl(lE — 41 + 1) < £

k(#7)

interaction vjr =vr; €R
Vg =10 if j— k|l >ro EESiEEan



an important corollary
H = thkcck+ ngk nk—%)

7,kEZ 1,kEZ
(1#k) (§#E)

5" and A7° belong to different phases within this
class of models

Uhique gapped g.8. / unique gapped g.S.

>
0 1/2 1

H, any path of Hamiltonians (with s  [0,1]) in this class
such that A, = A5SH and A, = ASSH

o, must go through a phase transition point with
either non-unique g.s., gapless g.s., or discontinvity



strategy of the proof

2 the model has no translation invariance
no band structure!

& the model has interactions
the ground state is not a Slater determinant,
but an intractable many-body state!!

2 we shall study phase transitions rigorously
we must treat infinite systems!!!

we define a Z, valued index in terms of the expectation
value of the local twist operator in a unique gapped
ground state on the infinite chain

Tasaki 2018

Uhique gapped g.8. unique gapped g.s.

>




symmetry of the models
=Y tinclon+ 5 3 vanliy — 5w — 3

eparticle number conservation U(1) symmetry

zinvariant under particle-hole transformation
+ gauge transformation on one of the sublattices

linear *-automorphism T (&) = (1) &
M'A;)=1-n; I[(H) =H WIS ¢
[(AB) = T(A)I(B)

ground state w on the infinite chain

L . 5
©:2) the ground state on a finite chain —- Lig
infinite volume limit «(4) = lim (64| 4263)
unique g.8. is T-invariant  w(I'(A)) = w(A)




general twist operator ..,

Po(x) = S

= Fdg( ] it ami Lot
funetion 9 : R — S = [0, 27)
{O i Sy

5 43
2T ZEZCEl - :

S
> |6/ (x)| <

Gl { — 27“() /4
2 0(x) wraps around S' once as = : zy — 2,
local twist operator Affleck, Lieb 1986
Up = exp|i > 0(2) (o + g1 — 1)

J
U, is local because expli 27 (fio; + figjy1 — 1)) = 1

@ @ ® @ @ @ @ @ @ @
= T
['(7;) =1—n; [(Us) =U;

w(['(A)) = w(A) w(U) € R reality is essential



main theorem and the index

TREOREM: letw be a unique gapped ground state with
energy 9ap AE > 0. for any o-funetion with ¢ < AE/t,,
w(Uy) is nonzero, and its sign is independent of ¢

—-"L v
i CUEUQ! =)
we define Ind,, € {0,1} = Z; by Ind, = M

T 0

remark: for the two extreme ground state of the SSH wmodel,
we recover the Zak phase as Ind.,, = 0 and Ind,,, = 1

remark: it is believed that z, is the correct classification



invariance of the index

tamily of Hamiltonians &, with s < [0, 1)(in our elass)

> H, has a I-invariant unique gapped g.8. ., with
energy gap > AE, > 0

»ws(A) is continvous in s for any local operator A

TREOREM: letw be a unique gapped ground state with
energy 9ap AE > 0. for any o-function with o*¢ < AE/t,,
w(Uy)i8 nonzero, and its sign is independent of ¢

—
MROLLARY the index md,, is independent of s € [0, 1]

-
p'?o”o*. X 20 -function with+2¢ < AE, 1t

the theorem implies w,(Us) # 0 tor any s € [0, 1]
ws(Uyg) cannot change the sign becavse of continvity

if Ind,,, # Ind,, there must be a phase transition!




an important corollary
H = thkcck+ ngk nk—%)

7,kEZ 1,kEZ
(1#k) (§#E)

5" and A7° belong to different phases within this
class of models

Uhique gapped g.8. / unique gapped g.S.

>
0 1/2 1

H, any path of Hamiltonians (with s  [0,1]) in this class
such that A, = A5SH and A, = ASSH

o, must go through a phase transition point with
either non-unique g.s., gapless g.s., or discontinvity



other theorems




duality of indices

w Unique gapped ground state

® ® ® ® ® ® ® ® ® ®
0 1 2 3

the twist operator Uy = exp [z Y " 0(25) (fraj + Rrajyr — 1)]
defines the index Ind, €z, '’

0 1 % 3
the twist operator U, = exp [z Z 0(27) (frgj—1 + Moy — 1)}

defines another index md’, € 7, ’
THEOREM: Ind,, + Ind’, = 1

Lany unique gapped g.s. is ’ropologlcallv nontrivial en‘her |
\withrespeet t0 Ind, O Ind;, |




decoupled system

5 370 1 4 i

= Z tj’k C}L-Ck -+ 5 Z Uj,k(nj L %)(nk = %)
j.kEZ J,kEL
(J7k) (J7£k)

Hye. 2 Hamiltonian in the above class without any hopping

between two half-infinite chains {....—2.-1} and {0,1,...}
(t,,=0ifj>0k<o00rj<0,k>0)

THEOREM: if /... has a unique gapped g.S. wae
then Ind,,,. =0

a unique gapped g.s. w with Ind,, = 1cannot be connected to
waecWithout passing through a phase transition

there is intrinsic entanglement between 0 and —1 in «




edge mode /- > o+ Y vty - Hin-

7,kEZ j,kEZ

further assume translation invariance as
Vjtryk+r = Yk tivr karm =tik  (7r1even constant)
Hawiltonian on the half-infinite chain {0, 1,...}

> e 1 K A
H, = Z Ljk C;'Ck 5 Z Ui k(fy — %)(”k B %)

J,k>0 5,k>0

TREOREM: suppose that the g.s. w of 1 is unique (in

the global sense), gapped, and satisfies Ind., = 1. Then any
I-invariant g.8. w; of I, is accompanied by a particle-
number-conserving gapless excitation near the edge

for any: > o thereis a local unitary 7. st. w. (U.)
aWGd.aL%(lﬂj{E[,lﬁJ) =

==




proof of the main
theorem

a finite chain




proof for a finite chain (periodic b.c.)

THEOREM: let . be a unique gapped ground state with
energy gap AE > 0. for any 9-function with ¢ < AE /1,

w(Uy) is nonzero, and its sign is independent of ¢
w-'__'L -
2 a Unique ground state |Pcs)witha gap AE > 0

Btake a o-function with+°¢ < AE/t, wivh = Qs [P

& standard Bloch, Lieh-Schultz-Mattis estimate
<@Gs|ﬁTﬁU9‘@Gs> — Fae < to’)/Qg < /NH

B ifw(Us) = (®as|Us|Pas) =0, Up|®as) I8 an excited state
with excitation energy < AE. $0We see w(Up) # 0

B since w(Us) € R varies continvously when we modify
0 -function continvously, the sign cannot change



4 and |<I>Gs> are mvanan’r under

THEOR ith
i 1 CT {
energy| uniform U(1) rotation ' > aE/m,
w(Up)i§ non-uniform rotation Us = (const)e’ 23 %%}

& a UNi .7 should change the expectation value of A7
\ ohly by ~ onst(ef) <t
>take a O-TORCTONWIT 7 < KE T

»standard Bloch, Lieb-Schultz-Mattis estimate
<@Gs|ﬁgﬁﬁg‘@gs> — Fae < t072€ < /NH

B ifw(Us) = (Pas|Us|Pas) = 0, Ug|Pgs) is an excited state
with excitation energy < AE. $0We See w(Up) # 0

B since w(Us) € R varies continvously when we modify
0 -function continvously, the sign cannot change



proof of the main
theorem

the infinite chain




basic (classical) lemma et om0
LEMMA: w(0J[, ) < tir?e

roof v\ ot - a wr) = wid) imply
W(OJ18,09) = £ {w(O}18, 0) +w(0ol, U]}

1 1

2

= ~w ({03, [, 0s])) = 50((0], [Brop, O]}

with [:]hop = Z tj,ké;ék Uy = exp [Z 0(27) (Noj + Ngjp1 — 1)}

Q.M

explicit computation shows that
U}, [elex, Ug]] = 2{cos(8; — 6;) — 1}éle,

|RHS|| < 2|cos(d; — ) — 1] < (6; — 6)> < 1°(j — k + 1)

we finally recall » ~ |t;4/(1k —j| +1)> <
k(#))



states and ground states

Aoc The set of all local operators

DEFINITION: a state~ : alinear funetion 2, — C
such that p(AtA) > 0and p(i) = 1

p(A) the expectation value of A in the state »

DEFINITION: a state wis a ground state if w(V*[H V]) >0
for any v ¢ 24,
finite system w(-) = (@ |®) (B|VTATV|®) > <<1>n7’fx7ﬁ|cp>

e e (U|H|¥) > Egs

DEFINITION: a ground state wis unique and gapped if
w(VIH,V]) > AEw(VT V) for any v e A, 8. w(V) X

B (WA) > Bos+ AE (Bas|¥) =0

for the same |7)



proof of the theorem

TREOREM: let . be a unique gapped ground state with
energy gap AE > 0. for any 9-function with 20 < AE /1,
w(Uy) is nonzero, and its sign is independent of ¢

e —— B —
PROOF: take a o-function with+?¢ < AE/t,
LEMMA: «(UJ[H,Uy)) < tor?e
w((A]g[[:[, lAfg]) = AEw(lA]g(Afg)
then the assumption w(Uy) = 0 contradicts with

DEFINITION: a ground state wis a unique and gapped if
w(VIH,V]) > AEw(VIV)forany v e 2. 84 w(V) =0

since w(Uy) € R varies continvously when we modify
o-tunction continvously, the sign cannot change



summary

A rigorous but very elementary index theory that
applies to a class of interacting one-dimensional
topological insulators, including the SSH wmodel

M our Z, index is defined from the sign of the
expectation value of the twist operator

[ the index is invariant under continvous modification
of unique gapped ground states (with symwmetry)

M a ground state with nontrivial index has a gapless
edge excitation when defined on the half-infinite chain




