Griffiths-type theorems for short-range spin glass models

Chigak Itoi, Hisamitsu Mukaida, and Hal Tasaki

definitions and main results discussion

Griffiths' theorem for the ferromagnetic Ising model

Ising model on the $L \times \cdots \times L$ hypercubic lattice

Hamiltonian $H_L(\sigma) = -\sum_{\langle x,y \rangle} \sigma_x \sigma_y$

long-range order
$$\mu_{
m LRO}=\lim_{L\uparrow\infty}\sqrt{L^{-2d}\sum_{x,y}\langle\sigma_x\sigma_y\rangle_{L,\beta}}>0$$

elation $\langle \sigma_x \sigma_y \rangle_\beta$ does not vanish as $|x-y| \uparrow \infty$

spontaneous magnetization $\mu_{\mathrm{SM}}=-\lim_{h\downarrow 0}rac{\partial f(eta,h)}{\partial h}>0$

the free energy is non-differentiable at h=0

infinitesimal magnetic field causes nonzero magnetization

spontaneous symmetry breaking

THEOREM: (Griffiths 1966) $\mu_{\rm SM} \ge \mu_{\rm LRO}$

different characterizations of spin glass order

broadening of the overlap distribution

$$q_{\rm br} = \sqrt{\overline{\langle R^2 \rangle} - (\overline{\langle R \rangle})^2} > 0$$

non-differentiability of the 2-replica free energy

$$q_{\text{jump}} = -\frac{1}{2} \left\{ \lim_{\lambda \downarrow 0} \frac{\partial f^{(2)}(\beta, \lambda)}{\partial \lambda} - \lim_{\lambda \uparrow 0} \frac{\partial f^{(2)}(\beta, \lambda)}{\partial \lambda} \right\}$$
$$= \frac{1}{2} \left\{ \overline{\langle R \rangle_{+}} - \overline{\langle R \rangle_{-}} \right\} > 0$$

$$q_{
m jump}=q_{
m EA}=\overline{\langle R
angle_+}>0$$
 models without magnetic field

literal breakdown of replica symmetry in the 3-replica system

$$q_{\rm rsb} = -\lim_{\lambda \downarrow 0} \frac{\partial f^{(3)}(\beta, \lambda, -\lambda)}{\partial \lambda}$$
$$= \overline{\langle R^{12} \rangle} - \overline{\langle R^{13} \rangle} > 0$$

definitions and main results discussion

Edwards-Anderson (EA) model with a magnetic field periodic b.c. (in this video)

 Λ_L : d-dimensional $L \times \cdots \times L$ hypercubic lattice

$$\sigma_x=\pm 1$$
: spin on $x\in \Lambda_L$ $\sigma=(\sigma_x)_{x\in \Lambda_L}$: spin configuration

Hamiltonian
$$H_L(\sigma) = -\sum_{\langle x,y \rangle} J_{xy} \sigma_x \sigma_y - \sum_{x \in \Lambda_L} h_x \sigma_x$$

nearest neighbor pairs in Λ_L

 $J_{xy}=J_{yx}\in\mathbb{R}$ random interaction (i.i.d.) $h_x\in\mathbb{R}$ random (or non-random) magnetic field (i.i.d.)

the equilibrium state at β in the limit $L\uparrow\infty$ standard EA model ($h_x=0$ for all x) may exhibit a spin glass phase if $d\geq 3$

EA model with a magnetic field not known if it exhibits a spin glass phase in d=3 it probably has a spin glass phase if d>6

Edwards-Anderson (EA) model with a ma we do not discuss the existence or the nature of the spin glass phase, but study the relations between different characterizations of "spin glass order" video) ration

nearest neighbor pairs in Λ_I

 $J_{xy}=J_{yx}\in\mathbb{R}$ random interaction (i.i.d.) $h_x \in \mathbb{R}$ random (or non-rand but the nature of the standard AE model ($h_x = 0$ for zero controversial! the equilibrium state at β in the controversial!

RE muuei win a magnetic field not known if it exhibits a spin glass phase in d=3it probably has a spin glass phase if d > 6

replica overlap and the broadening order parameter q_{br}

expectation value for two independent replicas

$$\langle \cdots \rangle_{L,\beta}^{(2)} = \sum_{\boldsymbol{\sigma}^1, \boldsymbol{\sigma}^2} (\cdots) \frac{e^{-\beta H_L(\boldsymbol{\sigma}^1)}}{Z_L(\beta)} \frac{e^{-\beta H_L(\boldsymbol{\sigma}^2)}}{Z_L(\beta)} \qquad \begin{array}{c} \boldsymbol{\sigma}^1 = (\sigma_x^1)_{x \in \Lambda_L} \\ \boldsymbol{\sigma}^2 = (\sigma_x^2)_{x \in \Lambda_L} \end{array}$$

replica overlap
$$R=L^{-d}\sum_x\sigma_x^1\sigma_x^2$$
 random average

replica overlap distribution $P_{\beta}(q) = \lim_{L \uparrow \infty} \langle \delta(R-q) \rangle_{L,\beta}^{(2)}$

order = broadening of $P_{\beta}(q)$ can be quantified by

$$q_{\rm br} = \sqrt{\int dq \, q^2 \, P_{\beta}(q) - \{\int dq \, q \, P_{\beta}(q)\}^2} = \lim_{L \uparrow \infty} \sqrt{\langle R^2 \rangle_{L,\beta}^{(2)}} - \left(\langle R \rangle_{L,\beta}^{(2)}\right)^2$$

non-differentiability of the 2-replica free energy and the jump order parameter $q_{\rm jump}$

two replicas with explicit coupling $\lambda \in \mathbb{R}$

Hamiltonian
$$H_L(\sigma^1,\sigma^2;\lambda) = H_L(\sigma^1) + H_L(\sigma^2) - \lambda \, \sigma^1 \cdot \sigma^2$$
 free energy $f^{(2)}(\beta,\lambda) = -\lim_{L\uparrow\infty} \frac{1}{\beta L^d} \overline{\log \sum_{\sigma^1,\sigma^2} e^{-\beta H_L(\sigma^1,\sigma^2;\lambda)}}$

if the system has any order, $f^{(2)}$ should be singular at $\lambda=0$

$$\begin{split} q_{\mathrm{jump}} &= -\frac{1}{2} \bigg\{ \lim_{\lambda \downarrow 0} \frac{\partial f^{(2)}(\beta, \lambda)}{\partial \lambda} - \lim_{\lambda \uparrow 0} \frac{\partial f^{(2)}(\beta, \lambda)}{\partial \lambda} \bigg\} \\ &= \frac{1}{2} \bigg\{ \overline{\langle R \rangle_{\beta, \lambda = +0}^{(2)}} - \overline{\langle R \rangle_{\beta, \lambda = -0}^{(2)}} \bigg\} \\ &= \sup_{\lambda \in \mathbb{R}} \frac{\partial f^{(2)}(\beta, \lambda)}{\partial \lambda} \\ &= \sup_{\lambda \in \mathbb{R}} \frac{\partial f^{(2)}(\beta, \lambda)}{\partial \lambda} - \lim_{\lambda \uparrow 0} \frac{\partial f^{(2)}(\beta, \lambda)}{\partial \lambda} \bigg\} \\ &= \sup_{\lambda \in \mathbb{R}} \frac{\partial f^{(2)}(\beta, \lambda)}{\partial \lambda} - \lim_{\lambda \uparrow 0} \frac{\partial f^{(2)}(\beta, \lambda)}{\partial \lambda} \bigg\} \\ &= \sup_{\lambda \in \mathbb{R}} \frac{\partial f^{(2)}(\beta, \lambda)}{\partial \lambda} - \lim_{\lambda \uparrow 0} \frac{\partial f^{(2)}(\beta, \lambda)}{\partial \lambda} \bigg\} \\ &= \sup_{\lambda \in \mathbb{R}} \frac{\partial f^{(2)}(\beta, \lambda)}{\partial \lambda} - \lim_{\lambda \uparrow 0} \frac{\partial f^{(2)}(\beta, \lambda)}{\partial \lambda} \bigg\} \\ &= \sup_{\lambda \in \mathbb{R}} \frac{\partial f^{(2)}(\beta, \lambda)}{\partial \lambda} - \lim_{\lambda \uparrow 0} \frac{\partial f^{(2)}(\beta, \lambda)}{\partial \lambda} \bigg\} \\ &= \sup_{\lambda \in \mathbb{R}} \frac{\partial f^{(2)}(\beta, \lambda)}{\partial \lambda} - \lim_{\lambda \downarrow 0} \frac{\partial f^{(2)}(\beta, \lambda)}{\partial \lambda} \bigg\} \\ &= \sup_{\lambda \in \mathbb{R}} \frac{\partial f^{(2)}(\beta, \lambda)}{\partial \lambda} - \lim_{\lambda \downarrow 0} \frac{\partial f^{(2)}(\beta, \lambda)}{\partial \lambda} \bigg\}$$

for the standard EA model without a magnetic field

$$q_{\mathrm{jump}} = q_{\mathrm{EA}} = \langle R \rangle_{\beta,\lambda=+0}^{(2)}$$
 EA order parameter

the first and the second theorems

THEOREM 1: in the standard EA model without a magnetic field, one has $q_{\rm br} \leq q_{\rm EA} = q_{\rm jump}$

straight forward extension of Griffiths' theorem

THEOREM 2: in the general EA model,

one has
$$\frac{(q_{\rm br})^2}{4} \le q_{\rm jump}$$

broadening of the overlap distribution implies nondifferentiability of the two-replica free energy

the theorems can be proved for any classical spin glass model with short-range interaction and bounded spins

the idea of the proof (for the EA model)

$$q_{\rm br} = \lim_{L \uparrow \infty} \sqrt{\langle R^2 \rangle_{L,\beta}^{(2)}} = \lim_{L \uparrow \infty} L^{-d} \sqrt{\sum_{x,y \in \Lambda_L} \left(\langle \sigma_x \sigma_y \rangle_{L,\beta} \right)^2}$$

$$\sum_{\substack{x \in S_1 \\ y \in S_2}} \left(\langle \sigma_x \sigma_y \rangle_{L,\beta} \right)^2 \leq \max_{\text{bc}} \sum_{x \in S_1} \left(\langle \sigma_x \rangle_{\ell,\beta,\text{bc}} \right)^2 \max_{\text{bc}} \sum_{y \in S_2} \left(\langle \sigma_y \rangle_{\ell,\beta,\text{bc}} \right)^2$$
Tasaki 1989

Edwards-Anderson order parameter

$$q_{ ext{EA}} := \lim_{\ell \uparrow \infty} rac{1}{\ell^d} \max_{ ext{bc}} rac{\sum_{x \in \Lambda_\ell} \left(\langle \sigma_x
angle_{\ell, eta, ext{bc}}
ight)^2}{\sum_{x \in \Lambda_\ell} \left(\langle \sigma_x
angle_{\ell, eta, ext{bc}}
ight)^2} = -\lim_{\lambda \downarrow 0} rac{\partial f^{(2)}(eta, \lambda)}{\lambda}$$

van Enter, Griffiths 1983

the first and the second theorems

THEOREM 1: in the standard EA model without a magnetic field, one has $q_{\rm br} \leq q_{\rm EA} = q_{\rm jump}$

straight forward extension of Griffiths' theorem

THEOREM 2: in the general EA model,

one has
$$\frac{(q_{\rm br})^2}{4} \le q_{\rm jump}$$

broadening of the overlap distribution implies nondifferentiability of the two-replica free energy

the theorems can be proved for any classical spin glass model with short-range interaction and bounded spins

3-replica free energy and the literal replica symmetry breaking (RSB) order parameter $q_{\rm rsb}$

Guerra 2013

three replicas with explicit couplings $\lambda, \lambda' \in \mathbb{R}$

Hamiltonian

$$H_L(\sigma^1,\sigma^2,\sigma^3;\lambda,\lambda')=H_L(\sigma^1)+H_L(\sigma^2)+H_L(\sigma^3)$$
 free energy
$$-\lambda\,\sigma^1\cdot\sigma^2-\lambda'\,\sigma^1\cdot\sigma^3$$

$$f^{(3)}(\beta, \lambda, \lambda') = -\lim_{L \uparrow \infty} \frac{1}{\beta L^d} \overline{\log \sum_{\boldsymbol{\sigma}^1, \boldsymbol{\sigma}^2, \boldsymbol{\sigma}^3} e^{-\beta H_L(\boldsymbol{\sigma}^1, \boldsymbol{\sigma}^2, \boldsymbol{\sigma}^3; \lambda, \lambda')}}$$

the measure of spontaneous breakdown of the permutation symmetry of the three replicas

$$q_{\rm rsb} = -\lim_{\lambda \downarrow 0} \frac{\partial f^{(3)}(\beta, \lambda, -\lambda)}{\partial \lambda}$$
$$= \overline{\langle R^{12} \rangle} - \overline{\langle R^{13} \rangle}$$

the third theorem

THEOREM 3: in almost any spin glass model (including long-range models), one has $2\,q_{\rm jump} \le q_{\rm rsb}$

non-differentiability of the two-replica free energy implies literal replica symmetry breaking

that $q_{\rm jump}>0$ has been proved (only) in long-range spin glass models such as the Sherrington-Kirkpatrick (SK) model (with or without a magnetic field) and the random energy model

Talagrand 2003, 2011, Guerra 2013

Theorem 3 establishes that these models exhibit literal replica symmetry breaking

definitions and main results discussion

limitation of the theory

we established relations between the different characterizations of "spin glass order"

none of the conditions have been proved rigorously for short-range spin glass models

these conditions do not always imply spin glass order. in the ferromagnetic Ising model, $\mu_{\rm SM}>0$ implies $q_{\rm br}>0$,

spin glass models under a magnetic field

our theory is probably most meaningful for (short-range) spin glass models under a (random or non-random) magnetic field, which have no obvious symmetry

no symmetry breaking (in the standard sense)

manifest spontaneous symmetry breaking

it may be that there is no spin glass order in d=3

Sasaki, Hukushima, Yoshino, Takayama 2007, Baity-Jesi et al. 2014

summary

- we proved inequalities for general short-range spin glass models that clarify the relations between different characterizations of "spin glass order"
- we proved that $q_{\rm br}>0$ implies $q_{\rm jump}>0$, and then $q_{\rm jump}>0$ implies $q_{\rm rsb}>0$
- The theory has an interesting implication in a model with a magnetic field. such a model does not exhibit a symmetry breaking by itself but may exhibit spontaneous breakdown of replica permutation symmetry in the 3-replica system
- Tour inequality may be used to prove the absence of spin glass order in some short-range models