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Gritfiths’ theorem for the

ferromagnetic Ising model

Ising model on the L x --- x L hypercubic lat tic@aSeiNs
Hamiltonian 7. (o) = -2, ) 040, i /A

fwo ways of characterizing the ferromagnenc order
UL RO = thToo \/L 2d Zx y<0'x0'y>L B = 0
lation (c,0,) ; does not vanishas |x — y| 1 o

spontaneous magnetization JIetyE=RuiiiaIaRc CLORSy

the free energy is non-differentiable at # = 0
infinitesimal magnetic field cavses nonzero magnetization

spontaneous symwetry breaking

THEOREM: (Griffiths 1966) 1sm > 1iro



different characterizations of spin glass order
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literal breakdown of replica symwmetry in the 3-replica system
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Edwards-Anderson (EA) model with a

magnetic field periodic b.c. (in this video)

A; : d-dimensional L x --- x L hypercubic lattice
o,=x1:8pinonx e A, o= (0,),c,, :3pinconfiguration

HaMiITO“ia“ HL(O-) Ezz3ndl Z<x,y> Ja;yO'a;O'y =T ZCBEAL th-CL‘

vearest nelghborpalrsin A,

Joy = Jyz € R randow interaction (i.i.d.)
h, € R random (or non-random) magnetic field (i.i.d.)

the equilibrium state at 5in the limit L 1 «
standard EA model ( 2. = 0 for all x )
may exhibit a spin glass phase if 4 > 3
EA model with a magnetic field
not known if it exhibits a spin glass phase in 4 = 3
it probably has a spin glass phase if d > 6




Edwarde-Andercon (EA) model with a
maWwe do not discuss the existence or the
A, :nature of the spin glass phase, but study
. _the relations between different bation

X

Hamchanracterizantions of “spin glass order”
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Joy = Jyz € R randowm interaction (i.i.d.)

he € R random (or non-randg ey oYz d.)

the equilibrium state at 5 in th@EELLCLLUS
andard AE model ( 7. = 0 for 2k controversial!
WA 5 spin glass phase if d > 3
controversial :
xe 'mouerwirma magnetic field
not known if it exhibits a spin glass phase in 4 = 3
it probably has a spin glass phase if d > 6




replica overlap and the broadening

order parameter g,
expectation value for two independent replicas
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replica overlap R=L"?3, olo?

replica overlap distribution Ps(q) = limzre (3(R — q))}7
no order some order,
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order = broadening of P;(¢) can be quam‘uﬁed by

Qor = \/quq2P5 — {J dgq Pp(9)}* = lim 4/(R*) L ( (2))



non-differentiability of the 2-replica free
energy and the jump order parameter ¢, .
two replicas with explicit coupling 1 € R

Hamiltonian ;. (0! o2 )\) = Hy(0!) + H (02) — Ao! - o2

1
2 — ' — (ol o02;
free eVlel’qv f( )(5, )\) = llleIII W lOg E :0.170.2 e BHL( A)

if the system has any order, /> should be singular at 7 = 0)
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van Enter, Griffiths 1983
Gump > 0 = [ is non-differentiable at 2 = 0

for the standard EA wmodel without a magnetic field

IR OV MRS EA order parameter




the first and the second theorems

THEOREM 1: in the standard EA wmodel without
a magnetic field, one has g, < gp) = gy,

straight forward extension of Griffiths’ theorem

THEOREM 2: in the general EA wmodel,

2
one has (Clzr) <

— qump

broadening of the overlap distribution implies non-
differentiability of the two-replica free energy
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the theorems can be proved for any classical spin glass

model with shor{-range interaction and bounded spins




/the idea of the proof (for the EA model) ™
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the first and the second theorems

THEOREM 1: in the standard EA wmodel without
a magnetic field, one has g, < gp) = gy,

straight forward extension of Griffiths’ theorem

THEOREM 2: in the general EA wmodel,
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the theorems can be proved for any classical spin glass

model with shor{-range interaction and bounded spins




3-replica free energy and the literal
replica symmetry breaking (RSB)

order parameter ¢,

three replicas with explicit couplings 1,1’ e R
Hawmiltonian
Hp(o',0%,0°;\X)=Hy(o')+ Hp(0%) + H(0)

free energy Aol g’ Nol-o
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the measure of spontaneous breakdown of the permutation

symmetry of the three replicas
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the third theorem

THEOREM 3: in almost any spin glass model
(including long-range models), one has 2 g, ... < g,

non-differentiability of the two-replica free energy
implies literal replica symwmetry breaking

that ¢,.,, > 0 has been proved (only) in long-range spin glass

models such as the Sherrington-Kirkpatrick (SK) model (with

or without a magnetic field) and the random energy model
Talagrand 2003, 2011, Guerra 2013

Theorewm 3 establishes that these models exhibit literal replica
symwmetry breaking
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limitation of the theory

we established relations between the different
characterizations of “spin glass order”

Ps(q)

F2(8,2)
4 A
i

none of the conditions have heen proved rigorously for
short-range spin glass models

these conditions do not always imply spin glass order
in the ferromagnetic Ising model, 1., > 0 implies ¢, > O,
22 O, a“d disb > 0

q jump




spin glass models under a
magnetic field

our theory is probably most meaningful for (short-range)
spin glass models under a (random or non-randowm)
magneﬂc ﬁeld whlch have no obvious sywmetry

smgle sysiem 9- repllca system 3-repl|ca system2 |
o) |
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10 symmetry breaking  wanifest spon’raneous
(in the standard sense)  gyymetry breaking

(jump

it may be that there is no spin glass order in d = 3

Sasaki, Hukushima, Yoshino, Takayama 2007, Baity-Jesi et al. 2014



summary

Mwe proved inequalities for general short-range spin
glass models that clarity the relations between
different characterizations of “spin glass order”

we proved that ¢, > 0 implies g, > 0, and then
Giump > O implies g, > 0

[ the theory has an interesting implicationin a
model with a magnetic field. such a model does not
exhibit a symwmetry breaking by itself but may exhibit
spontaneous breakdown of replica permutation
symwmetry in the 3-replica system

M our inequality may be used to prove the absence of
spin glass order in some shori-range models



