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- state and evolving under quantum
mechanical unitary time-evolution

M the proof is based on an accumulation of ideas and

methods (in particular, ETH = energy eigenstate

thermalization hypothesis) developed to understand

therwmalization in isolated macroscopic quantum

systews, as well as new results specific to the free
fermion chain
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introduction/motivation
model and the main theorem
ingredients of the proof




the emergence of macroscopic
irreversibility

a physical system governed by a deterministic reversible
time-evolution law may exhibit irreversible behavior
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it is essential that the systewm has a large degree of Q ) f
freedom |

ot ¥k
even an ideal gas may exhibit irreversible behawior‘“‘“’“‘”M
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irreversible expansion in a
classical ideal gas

N free classical particles on the interval [0,L] with
periodic boundary conditions ( N > 1)

x;(0) = 0 for all ;
v; drawn randowmly and vniformly from [—v;, v

x(t) = v;t mod L are almost uniformly
distributed in the interval [0,L]
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irreversible expansion (or “ballistic diffusion”)
the initial velocities must be chosen randomly
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classical irreversibility vs
quantum irreversibility

R
macroscopic irreversibility can be proved as a T
probabilistic statement that is valid for the majority of
randow initial conditions
there are always exceptional initial conditions that does
not lead to irreversibility

quantum systewms @

macroscopic irreversibility can be proved without
introducing randowmness (either in the Hamiltonian or in
the initial state)

we provide a simple rigorous example




introduction/motivation
model and the main theorem
ingredients of the proof




model and non-degeneracy

N non-interacting fermions on the chain {1,...,L)
L alarge prime
N alarge positive infeger

Hawmiltonian - i e e S e
XL e~ 10 eriodic b.c.
@ @ @ @ @ @

standard free fermion Hamiltonian with nearest
neighbor hopping except for the phase factor ¢

Lemma: all energy eigenvalues of A are non-degenerate
except for a finite number of 6, in particular, for any 0 # 0
such that 0| < 4N + 2L)~ D72

Tasaki 2010, 2016, Shiraishi, Tasaki 2023
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main theorem
o o o O O
S an arbitrary subsetof {1,...,L}) with | S| sites
Ns =3 ,es M= the number of particles in S
= % the equilibrium value of %
5 > 0 an arbitrary (sufficiently small) precision
L3 L) the total length of o/
Theorem: for any | ©(0)) and any (Jutficiently large) T.
there exusfs aset of € [0 T1with L”(Qf)/T < emmN g1

8ﬂ(1 ) N
negligibly swmall

for any t e [() T]\szi
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main theorem (less formal)
o o o O o ® o o o @ o
S an arbitrary subset of {1.....L}) with | S| sites
Ns =3 ,es = the number of particles in
i % the equilibrium value of %
5 > 0 an arbitrary (sufficiently small) precision
B(t)) = e " D(0))
Theorem: let| ©(0)) be an arbitrary initial state.
tor a sutficiently large and typical time 7, the measurement
result of % in| ®(r)) almost certainly equals the
equilibrium value 1 (within the precision ).




irreversible expansion

| ©(0)) any initial state where all particles are in S

N g
s =
| (1)) for sutticiently large and typical 1
Ns
N (= 9! ——0 @ O 00 *—00 o O-0——0-

“time’s arrow” has emerged from the unitary
time evolution in an isolated macroscopic b
quantum system! N
we dont have to introduce randomness in the o
initial state or the Hamiltonian

8\ =
N e

it is essential that we focus on a macroscopic 3 Ve
N
observable —



time-reversal “paradox™ . ...« |
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| ©(0)) any initial state where all particles a , fﬂiim

NS_

| (1)) for sutticiently large and typical 1

el e e—00—0—060 6656066 &

pafad
time-evolved state | S(70)) = e 10| 2(0)) = | D(0))*
% == 000000000000000

T, is not typical with respect to | =(0))
main theorem —p- for suthiciently large and typical -,

it holds for | Z(?)) that % ~
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strong ETH bound

Hamiltonian A = >0 {e?éle, +e e, e}

enerqy eigenstates
W) = a’li: ”'&kN‘O>

ol =112 L gibe gt k= (ki,..., ky)

essential technical result in the present work
Lemma; for every energy elgensfa’re | P, ), we have

\IJMP[INS :LL| > 5]‘\Ijk> <. 2et 3#(1 i

Va\

% almost certainly equals » (within the precision o)
in every energy eigenstate

strong ETH (energy eigenstate thermalization hypo’rheéis)

in the form of large-deviation

von Neumann 1929, Deutsch 1991, Srednicki 1994, Goldstein, Lebowitz, Mastrodonato, Tumulka, and Zanghi 2010, Tasaki 2016




“ergodicity” theorem

initial state ®(0)) = > 1 k| Vi)
time-evolved state |®(t)) = >, ag e "Frt )
expectation value

(B()|PIB(E)) = D s Oty €k~ BV (Ty | P W)

Lemma: all energy eigenvalues of A are non-degenerate

long-time average
limryeo T~ [ dt (B(1)|P®(t)) = ) o |? (Vg | P W)

Lemma: for every energy eigenstate | ¥, ), we have
\I;k“f)HNs ‘ > 5}‘\Ijk> < 26_3u(51—u)N

Theorem: for an arbitrary initial state | ®(0)), we have
limpyee T fo dt (P \PHNS ,u} . 5]@( e 3u(1 TR

fhe main theorewm is a simple corollary




summary

Mwe proved the presence of macroscopic irreversible
behavior (ballistic diffusion) in a free fermion chain
initially in a non-random state and evolving under
quantum mechanical unitary time-evolution

M the proof is based on an accumvulation of ideas
and methods (in particular, ETH) developed to
understand thermalization in isolated ;
macroscopic quantuwm systems, as well as new + 5
results specific fo the free fermion chain &/

remaining issues

[ extensions to other observables, time scale for
equilibration, treatment of non-integrable sysfevu@




